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ABSTRACT 

PROBABILISTIC RESILIENCE QUANTIFICATION AND VISUALIZATION 
BUILDING PERFORMANCE TO HURRICANE WIND SPEEDS 

Berna Eren Tokgoz 
Old Dominion University, 2012 

Director: Dr. Adrian V. Gheorghe 

Natural and manmade disasters are unpredictable and unavoidable in today's 

world. Their frequency of occurrence and damages keep increasing. Due to the efforts 

to reduce negative consequences from such disasters, the concept of resilience has 

gained so much popularity in disaster management area especially after disasters like 

the September 11 attacks and Hurricane Katrina. Complex systems of today are under 

operational risks because of increasing threats and their high level of vulnerability. 

Hence, such systems need to adapt the concept of resilience for continuous operations. 

Resilience is a proactive concept which should incorporate both pre-event 

(preparedness and mitigation) and post-event (response and recovery) activities. As a 

new concept, resilience engineering is really about monitoring threats to a system and 

taking necessary actions to reduce the probability of failure of the system. Particularly, 

quantitative approaches for measuring resilience need to be developed to compare 

different mitigation strategies, to come up with the most appropriate one, and to 

provide better support and decision making. In order to achieve this goal, a 

methodology for quantification of resilience of different building types against different 

categories of hurricane is proposed. The formulation presented in this dissertation for 

resilience quantification is based on several parameters such as structural loss ratios and 



www.manaraa.com

conditional probabilities of exceedance for damage states, estimated and actual 

recovery times, and wind speed probability. The proposed formulation is applicable to a 

community consisting of buildings with different types besides being applicable to 

individual building types. Numerical results for Monte Carlo and sensitivity analyses for 

resilience of various building types against Category 1,2 and 3 hurricanes are presented. 

A dashboard representation consisting of green, yellow and red zones is defined, and 

histograms are presented to demonstrate into which zone the resilience of each 

building type falls. Resilience of different building types is compared based on the 

numerical results. In addition, sensitivities of the resilience of various building types to 

different parameters are evaluated. Moreover, resilience values are computed before 

and after various mitigation actions are taken. These resilience values are compared to 

assess the effectiveness of the mitigation actions. The proposed formulation can be 

used to determine resilience values and compare resilience of different building types or 

communities against a specific hurricane category. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The concept of resilience has gained so much attention during the last few decades, 

especially after the U.S. Government included resilience improvement procedures in its 

critical infrastructure protection policies (U.S. Department of Homeland Security, 

2008). Wind related natural hazards such as hurricanes, tornadoes, and thunderstorms 

can have great economic and social effects on individuals and societies. Natural 

disasters are unpredictable and unavoidable. It is also impossible to determine and 

address all possible vulnerabilities, and protect individuals, communities and societies 

from these disasters. However, it is believed that preparation, response, recovery, and 

mitigation efforts, which can be considered as part of resilience strategies against these 

disasters, can help reduce their adverse consequences. 

Policy makers need a holistic resilience approach to address necessary actions to 

avoid loss of lives as well as economic and social crises, especially before a disaster 

occurs. As a new and evolving concept, resilience has been put into the area of 

emergency management. It is believed that resilience perspective can improve 

preparation, response, recovery, and mitigation efforts against risks in emergency 

management. 

It is difficult to determine which actions are helpful to reduce adverse 

consequences of natural disasters for decision makers with limited resources. Resources 

must be used efficiently while necessary actions are taken by decision makers in order 
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to apply necessary resilience strategies against disasters. As part of resilience, especially 

preparation and mitigation actions are important to reduce losses from unexpected 

events. Thus, there is a need for quantification of resilience to evaluate and compare 

effectiveness of preparation and mitigation strategies. There is ample information about 

specific mitigation actions, policies and scenarios needed to reduce direct or indirect 

losses from extreme disasters. However, there is not much in the literature about 

procedures on how to quantify the outcomes of these actions, policies and scenarios as 

a function of recovery time, which is an important component of resilience (Cimellaro, 

2008b). 

The main objective of this dissertation is to develop a general resilience 

quantification methodology for various buildings types against hurricane wind speeds. It 

is believed that this effort will be helpful to compare different preparation and 

mitigation actions in order to improve resilience of communities. 

1.2 Resilience - an Emergent Characteristic of a Complex System 

After September 11, 2001, the national policy of the U.S. focused on the protection of 

the nation from any terrorist or cyber-attack. Since then, most of the efforts have been 

about critical infrastructure protection nationwide. However, when Hurricane Katrina (a 

low probability-high consequence disaster) hit the New Orleans area, new 

vulnerabilities were realized at the national, state, and local levels (Zobel, 2010). After 

Katrina occurred, resilience has become a new management concept. Comprehensive 

preparedness actions and effective mitigation strategies have become important at the 

national, state, and local levels for extreme disasters (e.g. hurricanes, major 
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earthquakes, tsunamis, floods, wildfires, volcanic eruptions, and ice storms). There is a 

need for a holistic approach to assure that systems are as resilient as possible to 

withstand extreme disasters (Scalingi, 2007). 

In order to understand and analyze the behavior of large complex systems, 

traditional system analysis methods can be used. Complex systems have at least two 

defining properties; intricate interdependencies and a large number of components 

operating at the same time. Systems are said to become complex when they are made 

up of several parts that depend on and interact with each other to function. In order to 

explain the overall behavior at the system level, one has to decompose the system of 

interest into its parts and try to understand lower levels of interactions. Traditionally, 

system analysis decomposes the system into its components by using a top-down 

approach to understand system behavior in order to take protective actions against 

unexpected threats. However, it may not be possible to explain all complex system 

properties with such a decomposition process. According to Haimes, Crowther, and 

Horowitz (2008), system engineers are interested in system characteristics that emerge 

from the overall system design and integration including interactions and 

interdependencies among and between various system components. Protective actions 

or other types of changes in a system can influence system characteristics as well as 

component interactions. One can say that properties emerge from interactions of lower 

level components. Therefore, there is a strong relationship between complexity and 

emergence. 
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Emergence appears when one tries to explain system properties, while system 

size and complexity exceed human understanding (Paries, 2006). Likewise, resilience of 

complex systems cannot be explained at the macro level by using resilience of system 

components at the micro level. Therefore, resilience of complex systems cannot be 

predicted in advance of a disaster. As a consequence, resilience comes out as an 

emergent property when a disaster happens and should be considered as an emergent 

characteristic of a complex system (Hollnagel, Woods & Leveson, 2006). 

1.3 Resilience Quantification through Loss Estimation 

Quantification of resilience can be achieved through the use of loss estimation models. 

These models have gained considerable attention in recent years, and they have 

become better established and increasingly practical. New approaches emphasize that 

loss estimation models could be useful in quantifying resilience. Loss estimation models 

assist in evaluating community resilience and provide a desired measure for resilience 

(Chang & Shinozuka, 2004). 

There are various models and tools for estimating losses from wind-related 

hazards, but they are not always publicly available (Yau, 2011). It is not possible to 

obtain source codes for even publicly available loss estimation models like Hazards of 

United States (HAZUS*mh). However, as a well-established and widely used loss 

estimation model, the HAZUS*mh wind model provides definitions and fragility curves. 

These definitions and fragility curves can be used in the efforts for the quantification of 

resilience of various types of buildings in a community. 
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Losses due to a hazard can be divided into two categories; structural and non

structural losses. This dissertation considers only structural losses due to the concerns 

about finding data on non-structural losses. Some structural loss estimation models 

consider a component based approach whereas others use a direct approach (Jain, 

Davidson & Rosowsky, 2005). Component based loss estimation is selected in this 

dissertation for a couple of reasons. First, the approach of HAZUS*mh for structural 

damage evaluation is component based. Buildings are considered as envelopes and it is 

assumed that if these envelopes are exposed to hurricane winds, buildings will have 

damage (HAZUS*mh MR4, Hurricane Model Technical Manual, 2009). It is necessary to 

know how much damage could be experienced by different building types when 

buildings are exposed to hurricane winds during large intervals. Second, it is practical to 

choose the component based approach in order to follow which component of a 

structure is more sensitive to preparedness and mitigation actions. 

1.4 Purpose of the Study 

Various building structures can be damaged or totally destroyed because of complex 

wind-structure interactions during a hurricane (Cope, 2004). Wind-structure 

interactions can be described by three components; local wind field acting on a building, 

structural loads caused by wind field and resistance capacity of building components. 

Current well-known vulnerability models such as HAZUS*mh of FEMA (Federal 

Emergency Management Agency) and Florida Public Hurricane Loss Projection (FPHLP) 

are based on the study of wind pressures on important components of structures via 

wind tunnel experiments and in-situ measurements (Yau, 2011). These measurements 
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are used as basis for simulation characteristics to obtain fragility curves for various 

building types. Fragility curves give probabilistic numbers for a damaged structure as a 

function of wind speed based on structural loads and resistance capacities of building 

components (Cope, 2004). It is not the main purpose of this dissertation to generate 

fragility curves, or to investigate the relationship between structural loads and 

resistance capacity for different wind speeds. Rather, the main purpose of this 

dissertation is to build a model for the quantification of resilience by using fragility 

curves. The main concern is that this model should be general enough to be able to 

apply it to various structures and communities. This type of quantification can be useful 

for decision makers who would like to know the resilience of their communities against 

various wind speeds. Decision makers can accordingly take necessary preparedness and 

mitigation actions. 

1.5 Significance of the Study, Relevance of the Study to Engineering Management 

It is important to explain the link between the current study and Engineering 

Management (EM). EM is a two-sided discipline that focuses on managing engineering 

projects and applying engineering to management (Lannes, 2001). It can also be 

described as a bridge between engineering and management (Kotnour & Farr, 2005). 

Five core processes connecting this bridge are strategic management, project 

management, systems engineering, knowledge management, and change management 

According to Padilla (2010), complexity, learning, decision making and problem solving 

are the most important areas of interest in EM. Resilience needs to be adapted by the 
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EM community as an emergent system characteristic in order to implement resilience 

strategies during early stages of design and operation. 

The aim of the current study is to compute resilience for different building types 

in a community by using loss estimation indicators. It is very hard for decision makers to 

interpret loss estimation, especially if they do not have an engineering background. 

However, if somehow loss estimation is used for computation of resilience and 

visualized in a risk matrix, this can help decision makers to easily interpret results and 

make appropriate decisions. 

1.6 Organization of the Dissertation 

The organization of this dissertation is as follows: a literature review including various 

definitions of resilience in different areas and the efforts towards the quantification of 

resilience are given in Chapter 2. Chapter 2 also covers various hurricane loss estimation 

methodologies and tools as well as their applications. In order to quantify resilience, 

development of the formulation of resilience against a hurricane is covered in Chapter 3 

along with the assumptions of the formulation, its original contributions and the 

definitions of its components. Definition of a dashboard representation for resilience is 

also given in Chapter 3. Numerical results are presented in Chapter 4 for Monte Carlo 

and sensitivity analyses of resilience against Category 1, 2 and 3 hurricanes involving the 

parameters used in the formulation of resilience. Comparison of mitigation strategies 

are also given in Chapter 4. Chapter 5 ends this dissertation with concluding remarks 

along with limitations of the formulation and possible future work. In addition, a more 

complete list of definitions of resilience is given in Appendix A. A review of the 
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formulations for quantification of resilience in the literature is covered in Appendix B. 

Graphs for conditional probabilities of exceedance for damage states of various building 

types, which are used in this dissertation, are included in Appendix C. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter covers some important aspects of the literature that are related to 

this study. In this chapter, definitions of resilience in different research areas are given. 

In addition, efforts towards quantification of resilience are highlighted. Since 

computation of resilience is based on loss estimation in this dissertation, hurricane loss 

estimation methods and tools are also reviewed. 

2.1 Definition of Resilience 

Resilience has many definitions in various academic disciplines such as organizational 

behavior, political science, engineering, management, law, and economics. Researchers 

have attempted to provide a unique definition for resilience in specific areas especially 

homeland security and disaster management. However, there is no definition that is 

used in consensus in these areas. In order to show this lack of consensus, some 

definitions from the literature are given in this section. 

The ecologist Holling (1973) defines resilience as the ability of a system to absorb 

external stresses. Allenby and Fink's (2005) definition is: "The capacity of infrastructure, 

service and social systems potentially exposed to hazards from technical, natural or 

intentional events to adapt either by resisting system degradation, or readily restoring 

and maintaining acceptable levels of functioning, structure and service following an 

event" (p.1034). Resilience is a system capacity to generate foresight to recognize, 

anticipate and defend against the changing shape of risk before adverse consequences 
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occur (Hollnagel, Woods & Leveson, 2006). Resilience refers to the inherent ability and 

adaptive responses of systems that enable them to avoid potential losses (Rose & Liao, 

2005). Resilience is the result of a system (i) preventing adverse consequences, (ii) 

minimizing adverse consequences and (iii) recovering quickly from adverse 

consequences (Westrum, 2006). Manyena (2006) proposes that disaster resilience could 

be viewed as the "intrinsic capacity of a system, community or society predisposed to a 

shock or stress to adapt and survive by changing its nonessential attributes and 

rebuilding itself (p.443). 

The major question about resilience is what the concept of resilience should 

cover. According to the first perspective, resilience can be viewed as a process which 

includes preparation and mitigation actions. This characteristic of resilience can clearly 

be seen in the following definition by Bruneau et al. (2003): "The ability of social units to 

mitigate hazards, contain the effects of disasters when they occur, and carry out 

recovery activities in ways that minimize social disruption and mitigate the effects of 

future disasters" (p.735). 

From a structural perspective, resilience covers two types of characteristics. The 

first one is the flexibility of a system or a social unit to avoid failure. The second one is 

that a system or a social unit should have an inherent need to spot failures early in order 

to mitigate their consequences. The definition of resilience by Walker et al. (2004) 

shows these two characteristics: "the capacity of a system to absorb disturbance and 

reorganize while undergoing change so as to still retain essentially the same function, 

structure, identity and feedbacks" (p.2). 
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Cascio's (2009) definition also shows the same characteristics: "the capacity of 

an entity (such as a person, an institution, or a system) to withstand sudden, 

unexpected shocks, and (ideally) to be capable of recovering quickly afterwards" (p.l). 

In the literature, it is possible to find more definitions similar to the ones above 

and these definitions conceptually explain what resilience is. It is possible to see some of 

the definitions in Appendix A along with the corresponding references. However, how a 

system or a social unit becomes more resilient is still a vague concept in the literature. 

In order to define a resilient system or society, resilience should be somehow measured. 

2.2 Efforts towards Quantification of Resilience 

Identification of appropriate metrics for resilience and quantification of it based on 

these metrics are necessary especially in disaster management and emergency 

management areas. These types of metrics can help improve resilience strategies and 

aid in comparison. In addition, there is a need to improve disaster management plans 

for institutions (e.g., government and private sectors) so that mitigation actions can be 

taken in order to reduce losses from unexpected events. However, mitigation actions 

may not always be efficient if a disaster exceeds expectations. Therefore, communities 

should show resilient behavior such as the ability to quickly recover from an unexpected 

event. 

While there is ample information about specific mitigation actions, policies or 

scenarios to reduce direct or indirect losses from extreme disasters, there is not much in 

the literature about procedures on how to quantify these actions, policies, or scenarios 
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as a function of recovery which is an important component of resilience (Cimellaro, 

2008b). 

Since establishing disaster resilient communities have gained significant 

approval, new frameworks have been proposed to quantify resilience. Loss estimation 

models have gained much attention in recent years, and they are becoming better 

established and increasingly practical. New approaches emphasize that loss estimation 

models could be useful for quantification of resilience since they are clearly related to 

community resilience. However, they do not provide direct measures of resilience 

(Chang & Shinozuka, 2004). 

Several methods have been proposed in various disciplines such as psychology, 

infrastructure systems, networks and enterprises/organizations for quantification of 

resilience in the literature (Henry & Ramirez-Marquez, 2012). According to these 

methods, measurement of resilience can be done in two ways: One way is to use 

engineering perspectives; the other one is to use indicators. Bruneau et al. (2003), and 

Bruneau and Reinhorn (2007) first established a framework to conceptualize, define and 

enhance seismic resilience of communities by using engineering perspectives. In their 

work, they emphasized that a clear definition of resilience and identification of its 

dimensions were necessary to quantify it. Their objectives for enhancing seismic 

resilience are to minimize loss of lives, injuries and economic losses. According to their 

findings, a resilient system should show the following characteristics; 
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• reduced failure probabilities, 

• reduced consequences from failures in terms of lives lost, damages, and 

negative economic and social consequences, 

• reduced time to recovery (restoration of a specific system or a set of 

systems to their normal levels of functional performance). 

They also proposed that resilience has four dimensions which are technical, 

organizational, social, and economic (TOSE). Technical and economic dimensions are 

more related to physical systems. Organizational and social ones are associated with the 

ability of a community to resist and recover quickly from an unexpected event. All these 

dimensions of community resilience cannot be satisfactorily accounted for by any single 

measure of performance. Hence, it is necessary to identify different performance 

measures for different systems. In addition, Bruneau et al. (2003) also propose that 

resilience has four main properties; robustness, redundancy, resourcefulness and 

rapidity (4Rs). These properties are defined as follows (O'Rourke, 2007): 

Robustness: The inherent strength or resistance in a system to withstand 

external demands without degradation or loss of functionality. 

Redundancy: System properties that allow for alternate options, choices and 

substitutions under stress. 

Resourcefulness: The capacity to mobilize needed resources and services in 

emergencies. 

Rapidity: The speed, at which disruption can be overcome, and safety, services 

and financial stability can be restored. 
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Moreover, Bruneau et al. (2003) also described quality performance measures 

for important lifeline systems such as power, water, hospital and emergency services. 

They suggested some performance measures as metrics for resilience of a water system 

as a critical infrastructure. 

Even though Bruneau et al. (2003) summarized a fundamentally conceptualized 

framework for community resilience, they had no details on either quantification of 

resilience or actual implementation (Cimellaro, 2008a). Chang and Shinozuka (2004) 

proposed a series of quantitative measures for resilience. They refined the 

conceptualization efforts of Bruneau et al. (2003) and proposed a new approach. The 

refined approach proposed by Chang and Shinozuka (2004) has two advantages over 

that of Bruneau et al.; expression of resilience more compactly while still addressing its 

multidimensional characteristics and expression of resilience metrics in a probabilistic 

manner. In addition, Chang and Shinozuka (2004) described resilience by defining loss of 

system performance based on predefined performance standards of robustness and 

rapidity. They demonstrated an actual implementation of quantitative measures of 

resilience in the Memphis water system. 

Chang and Miles (2003) developed a conceptual framework for recovery which 

includes the relationships among households, businesses, and lifelines of a community. 

The aim of their research was to develop a robust conceptual model for community 

recovery, and establish a geographic information system tool to help with community 

planning and preparation. They simulated the recovery of Kobe in Japan from an 

earthquake with a magnitude of 6.9 in 1995 in order to evaluate the usability, 
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effectiveness, and behavior of their community recovery model. Based on the 

community characteristics and demographics of Kobe, four neighborhoods each with 

one hundred households and one hundred businesses were generated. The model took 

on the characteristics and behaviors of households and businesses into consideration. It 

searched for the effects of environment on the households and businesses of Kobe, and 

the social characteristics of the community and policy decisions. Even though they did 

not give any measure of resilience, they emphasized that the concept of recovery could 

be related to real factors such as income, the age of residential building, etc. 

After Bruneau et al. (2003) established the conceptualization of resilience, 

Bruneau and Reinhorn (2007) tried to quantify seismic resilience of acute care facilities. 

They focused on seismic resilience, but their goal was to develop general concepts and 

formulations for other hazards as well. In their study, they included resourcefulness and 

redundancy, which are the properties of resilience, as the third and the fourth 

dimensions, respectively. 

Cimellaro, Reinhorn and Bruneau (2006) developed a framework with a 

resilience formulation based on the conditional and total probability theorems. They 

combined both structural and nonstructural loss functions with fragility and recovery 

functions to evaluate resilience. They applied this approach to a single hospital in San 

Fernando Valley, California with the outputs of the HAZUS#mh earthquake module for a 

given scenario. They later applied the same approach to six hospitals in Memphis, 

Tennessee to calculate their resilience for an earthquake scenario. 
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Cimellaro (2008b) later improved the resilience formulation for a seismic event 

with the addition of six sources of uncertainty. These uncertainties are: earthquake 

intensity measures, response parameters, performance threshold, damage measures, 

losses, and recovery time. He also gave a mathematical representation for two 

dimensions of resilience which are rapidity and robustness. He applied his final 

approach to a hospital in San Fernando Valley to calculate resilience. 

Reed, Kailash and Christie (2009) proposed a methodology to evaluate resilience 

of subsytems of network infrastructure by combining fragilities and quality 

characteristics of the infrastructure with input-output model (10) for a natural disaster. 

Resilience of lifelines was measured by using fragilities which are tools to describe the 

probability of damage given a level of hazard. Quality (Qt) was defined as a function 

whose value ranges between 0% and 100% where 0% means that no service is available 

and 100% means that there is no degradation in service. Their approach was adopted 

from the Bruneau et al. (2003) and they extended this study with wind-related damage. 

Power outages and restoration data of Hurricane Katrina were used for the 

implementation of their methodology. 

Omer, Nilchiani and Mostashari (2009) suggested a model to measure resilience 

of a submarine cable system as a network infrastructure. The ratio of the rate of 

delivery of the system after a disruption to the rate of delivery before the disruption 

was defined as a reference for resilience. Any hypothetical disruption on the demand, 

capacity and flow of information, which can be natural or manmade, had been 

computed node to node to evaluate resilience of the system. 
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Another perspective for quantification of resilience is to use selected indicators 

or variables. Since it is very hard to quantify absolute resilience without any external 

reference to validate results, indicators or variables can be used as proxies 

(Schneiderbauer & Ehrlich, 2006). Indicators can be used to assess relative levels of 

resilience for either comparative purposes or analyzing resilience trends. Cutter et al. 

(2008) suggested some indicators for the evaluation of resilience according to different 

dimensions of a system such as ecological, social, and economic. Birkmann (2006) 

identified important characteristics of indicators while they are selected. These 

characteristics consist of validity, sensitivity, robustness, reproducibility, scope, 

availability, affordability, simplicity, and relevance. One of the most important criteria 

among them is validity, which is directly related to whether the selected indicator is a 

good representative of resilience for the system of interest or not. This qualitative 

indicator approach received several criticisms due to its subjectivity about selecting 

indicators, weighting, lack of availability of some variables and difficulties of validation 

(de Leo'n & Carlos, 2006; Luers et al., 2003). 

Researchers from Argonne National Laboratory developed a resilience index 

methodology to estimate resilience and provide resilience comparison for critical 

infrastructures and their subsectors (Fisher et al., 2010). The methodology used subject 

matter experts to evaluate system features like robustness, redundancy, 

resourcefulness, and rapidity. 

Among the above studies, the ones that used the engineering perspectives 

towards the quantification of resilience focused on only earthquake hazard and relied 
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on loss estimation. On the other hand, hurricane wind hazard is the focus of the study 

in this dissertation. Earthquakes and hurricanes are two types of hazards that are 

different from each other in terms of their effects. In order to estimate losses and 

quantify resilience against hurricanes, it is necessary to determine what types of losses 

are expected from hurricane winds in the first place. Therefore, hurricane loss 

estimation and tools used for this purpose are presented in detail below. However, 

hurricanes and their impacts have to be explained first before giving the details of 

hurricane loss estimation. 

2.3 Hurricane Loss Estimation 

2.3.1 Definition of Hurricane 

Hurricane is a low pressure weather system with a well-defined circulation. It is 

generally formed in tropical waters with maximum sustained winds of 74 mph or higher. 

Hurricanes can produce heavy rain, strong winds, storm surge, and tornadoes. All these 

impacts of hurricanes can cause significant damages at regional and state levels. If a 

hurricane strikes at a coastline, the major concerns will be the number of deaths and 

economic loss. 

Hurricanes are one of the costliest natural hazards in the U.S. They have been 

blamed for severe damage to residential constructions and caused social disruption 

especially in the past two decades. According to Pielke and Landsea (1998), the average 

annual economic loss from hurricanes is about $5 billion for the U.S. East and Gulf 

Coasts. This estimate is close to the National Oceanic and Atmospheric Administration 

estimates of $84 billion dollars in hurricane related damage since 1980 (Pinelli et al., 
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2004). Hurricane Katrina caused almost $85 billion of property damage in 2005. Table 

2.1 shows the ten costliest U.S. hurricanes (Blake et al., 2007). 

Table 2.1: The ten costliest U.S. hurricanes, 1900-2006 (Blake et al., 2007). 

Rank Hurricane Year Category Cost of Damage (2006 dollar value) 
1 Katrina 2005 3 $84,6 billion 
2 Andrew 1992 5 $48.1 billion 
3 Wilma 2005 3 $21.5 billion 
4 Charley 2004 4 $16.3 billion 
5 Ivan 2004 3 $15.5 billion 
6 Hugo 1989 4 $13.5 billion 
7 Agnes 1972 1 $12.4 billion 
8 Betsy 1965 3 $11.9 billion 
9 Rita 2005 3 $11.8 billion 
10 Camille 1969 5 $9.8 billion 

Hurricane-related monetary loss and loss of lives have continued to increase in 

recent years because of the constant growth in population and infrastructures along the 

coasts of the U.S. (Finkl, 2000).Therefore, FEMA encouraged emergency management 

agencies to enhance current mitigation strategies in order to reduce both monetary and 

human losses from hazards (Hooke, 2000). Because of these initiatives, some loss 

estimation tools such as HAZUS*mh and Consequence Assessment Tool Set (CATS), and 

loss estimation models such as damage curves and Computable General Equilibrium 

(CGE) has been developed. 

The National Weather Service uses the Saffir-Simpson scale in order to classify 

hurricanes. The Saffir-Simpson scale rates intensities of hurricanes based on wind speed 

and barometric pressure measurements. It is possible to predict potential property 
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damage and flooding levels from imminent storms by using this scale. The scale is 

summarized in Table 2.2. 

Table 2.2: Saffir-Simpson scale. 

1 74-95 Minimal 
2 96-110 Moderate 
3 111-130 Extensive 
4 131-155 Extreme 
5 >155 Catastrophic 

2.3.2 Loss Estimation 

Three categories can be identified for losses, which are economic, humanitarian, and 

ecological. Each of them can be divided into direct and indirect losses as shown in Figure 

2.1 (Mechler, 2003). Direct losses can happen because of the direct impacts of hazards. 

On the other hand, indirect losses can result from the consequences of direct losses. 

2.3.3 Hurricane Loss Estimation Models 

Before loss estimation modeling was developed, federal agencies used to do cost-

benefit analysis to measure effectiveness of mitigation actions. However, due to the 

limitations of determining environmental impacts of mitigation actions via cost-benefit 

analysis, loss estimation modeling was developed in 1960s (Rose, 2004). Loss estimation 

modeling became more acceptable after the development of Geographic Information 

Systems (GIS) in 1990s. It also became more popular as a measure of efficiency of 

mitigation actions (Rose, 2005). Typically, hurricane loss estimation models are built up 

in a GIS environment and consist of five essential modules; 
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• input data sets, 

• wind module, 

• boundary layer module, 

• damage or vulnerability module, 

• frequency of occurrence module. 

Hazard 
Loss 

Ecological 
Loss 

Economic 
Loss 

Humanitarian 
Loss 

Indirect loss 
(Psychological effect) 

Direct Loss 
(Loss of life and injury) 

Direct Loss 
(Structural, infrastructure 
damage, crop loss) 

Macroeconomk Loss 
(Gross domestic product, relief 
and rehabilitation) 

indirect loss 
(Business interruption, 
insurance and bank loss, 

Direct loss (Damage 
to forest, 
ecosystem, soil 
erosion, etc) 

Indirect Loss 
(Loss of leisure) 

Figure 2.1: Types of loss (Mechler, 2003). 

In addition, loss estimation models might have direct and indirect economic and 

social loss modules (Jain et al., 2005). The five essential modules mentioned above are 

explained in the following paragraphs. 

All wind loss models consist of at least three input datasets which are land cover, 

historical storm tracks, and exposure datasets (Watson & Johnson, 2004). The need for 

the details of these three datasets changes depending on the requirements of the 
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model. For instance, land cover data can basically show only whether the location of 

interest is land or sea. In a complicated land cover model, such as a trajectory based 

model, it is possible to see 72 land cover classifications. Exposure datasets include 

location and value of risks as well as construction types. In order to simulate hurricanes 

and determine frequency of occurrence, historical hurricane tracks and intensities are 

required. The North Atlantic Hurricane Database (HURDAT) holds the necessary 

information about historic hurricanes from 1851 to 2011. 

A wind module usually tries to characterize the wind climate in a region. 

Researchers have been attempting to express hurricane behavior with a simulation 

method for the last 30 years. Their aim is to estimate hurricane winds and wind 

direction for a region that is the most likely to experience hurricanes in the long term 

(Jain et al. 2005). 

Wind information is adapted in a boundary layer module in order to take land 

topography into consideration. The module also shows the location of all buildings and 

lifelines. It is a GIS layer and describes all key characteristics of buildings. Structures are 

grouped into several types according to their characteristics or vulnerabilities. 

A vulnerability module defines functions usually in a fragility curve format to 

estimate physical losses for different wind speeds. The probability of a component or a 

structure to be in a specified damage state at a given wind speed can be obtained from 

a fragility curve. In order to identify structural attributes, which are the most important 

attributes to determine vulnerabilities and their interactions, many experimental, 

computational and post hurricane studies have been done (e.g. Mehta et al., 1992; 



www.manaraa.com

23 

Phang, 1999). Two approaches can be observed in this module; component based and 

direct. Vulnerabilities of specific components that hold the integrity of a structure (such 

as roof, walls, and windows) are determined separately in the component based 

approach. The entire vulnerability of a structure can be determined from the 

vulnerabilities of its components and their interactions. On the other hand, the entire 

vulnerability of a structure can also be estimated by the direct approach. Some 

vulnerability models (Stubbs & Perry, 1996; Unanwa et al., 2000) as well as software 

such as HAZUS*mh (NIBS, 2002) use the component based approach while other 

vulnerability models (Huang et al., 2001; Mitsuta et al., 1996; Sparks et al., 1994) use the 

direct approach. 

A frequency of occurrence module gives the answer to the question, how often?, 

in order to estimate the losses for multiple events. Unlike this module, the first four 

modules are associated with the losses for a single event. Three common approaches 

can be used for the determination of frequency of occurrence, which are historical data, 

probabilistic approach, and realistic reproduction of the hurricane formation and 

movement. 

According to Watson and Johnson (2004), there are three models that are well-

known for direct losses from hurricanes: 

• historical storm set estimation, 

• Monte Carlo simulation and estimation, and 

• maximum likelihood estimation. 

These three models are described in the following paragraphs. 
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Historical storm set estimation simulates past hurricanes based on present 

exposure. Extracted HURDAT is used in this approach. First, damage data for a census 

block of the current event are obtained and then damage is simulated for future 

hurricanes. 

Monte Carlo simulation was introduced by Applied Insurance Research (AIR). 

Other insurance companies also used it to fit probability distributions of historical 

hurricanes to important hurricane characteristics such as central pressure, radius of 

maximum winds, and forward speed. The objective was to simulate hurricane damage 

for future events. 

The maximum likelihood estimation was proposed by Watson and Johnson 

(1999). It also uses historical storm data, simulates every storm and records the 

maximum wind from each census block. Future hurricane characteristics can be 

predicted this way with a damage function to assess possible damage from these 

hurricanes. 

Indirect loss estimation models are generally developed by statisticians or 

economists, and can be categorized into deterministic, stochastic, survey, and hybrid 

models (Rose, 2004). Deterministic estimation can be used if hurricane loss data are 

available. Common deterministic models are 10 analysis, linear programming, and CGE 

model (Rose, 2004). Since these models require intensive data and there is usually a 

lack of data, it is very hard to implement them after a major hurricane occurs. 

In order to overcome the data gap, a stochastic method can be used in loss 

estimation. The most commonly employed stochastic approaches are Monte Carlo 
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simulation and econometric analyses (Rose, 2004). Even though these approaches 

decrease the uncertainty due to a lack of reliable and complete data sets, they need a 

large amount of time series data that is very difficult to collect. Since these methods are 

statistical in nature, they are criticized for being applicable to a very small data set 

(Rose, 2004). 

The survey method is a very commonly used approach because loss data can 

only be collected after a disaster (Cochrane, 2004). Telephone, e-mail, or questionnaire 

surveys can be done by interviewing people affected from a disaster. Data sets can be 

generated this way. On the other hand, a hybrid model computes direct damage first, 

evaluates it on business loss and then estimates indirect loss. Thus, the hybrid approach 

is highly developed and considered to be more credible than the other approaches. 

As mentioned before, even though quantification of resilience cannot be 

accomplished directly by using loss estimation methods, these methods can be useful as 

the first step to quantify and later visualize resilience. Common loss estimation tools are 

given in the next section. 

2.4 Loss Estimation Tools 

To evaluate and assess losses from a disaster, it is very important to develop a loss 

assessment tool. Many researchers have been working on the development of such 

tools to evaluate future losses and take mitigation actions for decision makers. These 

tools are developed and used by both public and private sectors. Commonly used loss 

estimation software tools/systems are given in the next section. Since HAZUS*mh is used 

in this dissertation; information about it is given in detail. 
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2.4.1 Hazards of US (HAZUS*MH) 

HAZUS*mh is multi-hazard loss estimation software, which was developed in the late 90s 

in the U.S. It was developed and funded by FEMA and the National Institute for Building 

Sciences (NIBS), and uses ArcGIS platform. It is one type of widely accepted multi-hazard 

software used by federal, state, regional, and local governments. HAZUS*mh currently 

provides analysis for three types of hazards which are earthquakes, floods, and 

hurricanes. 

HAZUS*mh uses a risk based approach to disaster management, and allows users 

to generate scientifically valid estimates for damages and economic losses. Another 

benefit of HAZUS*mh is that it develops a methodology for loss estimation and identifies 

potential vulnerable points within a study area, which can be either local or regional. 

The ultimate goal of HAZUS*mh is to allocate limited resources in order to respond to 

and recover from a disaster event. It produces loss estimates by using extensive national 

databases. 

The aim of having a hurricane module in HAZUS*mh is to provide state and local 

decision makers with a tool to evaluate, plan for and mitigate effects of hurricane winds. 

Different regions have different kinds of wind related hazards such as hurricanes, 

tornadoes, thunderstorms, and extra-tropical cyclones, as shown in Figure 2.2. Thus, 

generating the entire wind model for different regions can be helpful for state and local 

officials. The HAZUS*mh hurricane module covers twenty two Atlantic and Gulf Coast 

states and Hawaii. The framework of the HAZUS*mh hurricane model is shown in Figure 

2.3. 
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Figure 2.2: Meteorological events contributing to wind hazards in different regions of the U.S. 
(HAZUS,mh MR4 Hurricane Model Technical Manual, 2009). 

2.4.2 Consequence Assessment Tool Set (CATS) 

As a GIS-based disaster prediction tool, CATS was developed by FEMA and the 

Department of Defense (SAIC, 2008). The model is developed for both natural and 

industrial hazards, and used by emergency management staff. In order to determine 

hazard impact areas, population and resources affected, CATS employs real-time 

weather data, remote sensing images of the study site, demographic information and 

infrastructure data. The output provided by CATS can be used to generate a model to 

determine the support needed after a disaster. Moreover, evacuation and contingency 

plans can be prepared to overcome a disaster event. 
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Figure 2.3: Framework of HAZUS'MH hurricane model (HAZUS#mh MR4 Hurricane Model Technical 
Manual, 2009). 

2.4.3 The Arbiter of Storms (TAOS) 

The Kinetic Analysis Corporation (KAC) developed this hazard tool (KAC, 2008). In order 

to generate a storm surge layer, the tool uses wind, wave, boundary layer, and 

hydrodynamic models. Damage to structures and infrastructure can be computed with 

the hazard module of TAOS. The module uses socio-economic, geophysical, and land 

use/cover data along with the storm surge layer. In addition, several damage functions 

are used to compute wind damage. 
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2.4.4 RiskLink 

RiskLink software was developed by Risk Management Solutions, Inc. (RMS). The 

purpose of the software is to estimate property losses and the uncertainty related to 

the loss due to various hazards. RiskLink can be run by using either a deterministic or a 

probabilistic method. The software covers all major insurance markets in North 

America, Europe, Asia-Pacific, Latin America, and the Caribbean, and includes 

residential, commercial, and industrial building types. RiskLink helps compute loss 

estimates in real estate and insurance industries. Its output is multiple risk metrics, 

which are applicable to a broad range of businesses. 

2.4.5 WORLDCATenterprise™ 

EQECAT developed WORLDCATenterprise™ software to quantify and manage potential 

financial impacts of natural hazards. The WORLDCATenterprise™ estimates property 

losses, and uses a probabilistic approach to estimate probable maximum loss, net 

expected loss, and annual expected losses from a hazard. This software is helpful for the 

real estate and insurance industries to compute loss estimates. 

2.4.6 CLASIC/2 

Insurance and facultative reinsurance underwriters, catastrophe risk managers, 

managing general agents and claims managers use CLASIC/2 software, which was 

developed by AIR Worldwide Corporation. CLASIC/2 assesses the catastrophic loss 

potential of individual risks, policies and portfolios of policies. Utilizing detailed 

exposure information for each location and policy, this intuitive and logically designed 

system facilitates individual risk selection and pricing decisions. 
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2.4.7 Florida Public Hurricane Loss Projection (FPHLP) Model 

A multi-disciplinary team of experts from Florida International University as well as 

various other universities and research institutions developed the FPHLP model. Since 

neither insurance companies nor developers of HAZUS*mh give their methodologies for 

hurricanes in detail, the Florida Commission on Hurricane Loss Projection Methodology 

decided to develop its own model to predict losses due to hurricanes. FPHLP uses a 

component based approach similar to that of HAZUS*mh, which is one of the advantages 

of the model. The basic simulation engine of the model is Monte Carlo simulation, but 

the source code for the FPHLP model is not available to the public. 

2.5 Application of Loss Estimation Tools 

There are other tools that are different from the ones explained above. Researchers 

from different disciplines have been developing tools to estimate loss for specific 

regions and scenarios. 

Jain et al. (2005) developed a tool for estimating changes in hurricane risk over 

time. They claim that current loss estimation methodologies use current building 

inventory data to estimate future hurricane losses, which can mislead mitigation plans 

for decision makers. Thus, in order to avoid this situation, they combined existing 

HAZUS#mh building inventory data and a land-use model for a case study in Dare and 

New Hanover counties of North Carolina. By combining wind hazard and vulnerability 

models, they were able to identify residential structures that would possibly have wind 

damage from future hurricanes. They also predicted future financial losses from impacts 

of winds. 
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A real-time damage assessment model was developed by Powell and Huston 

(1995) for Florida Power and Light Corporation. In order to estimate damage and 

financial losses, real-time meteorological variables such as maximum sustained wind 

speed, sustained wind pressure and peak gust were used. Pinelli et al. (2004) used a 

relatively similar approach to identify possible damage to single family residential 

buildings and their components at different wind speeds by using Monte Carlo 

simulation. Monetary losses based on the extent of damage to structures and their 

components were computed. Replacement costs of damaged structures were also 

determined based on Florida building code requirements. In order to estimate the 

impacts of winds on residential structures, a wind speed versus damage curve was 

generated by Chandler et al. (2002), with the combination of historical events and a 

dataset of vulnerable buildings. 

Some studies use regional economic and demographic characteristics to 

estimate losses from hurricanes rather than using assessment of property damage. Katz 

(2002) used a Poisson model to predict future hurricanes and a log-normal model to 

compute dollar loss based on wealth index, gross domestic product, and total 

population distribution for the East Coast of the U.S. Choi and Fisher (2003) used a 

similar approach to estimate dollar losses for the Mid-Atlantic Region. 

The tools explained above were developed to estimate losses from hurricanes. 

Most of the studies look at the relationship between the impacts of winds on structures 

and their impacts on economy. Therefore, it is realized that there is no study based on 

loss estimation methods for quantification of resilience against hurricanes. There are 
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natures of these two disasters are quite different. 
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CHAPTER 3 

THE METHODOLOGY FOR CALCULATION OF RESILIENCE 

In this chapter, development of a formulation for the quantification of resilience 

is presented. Damage state and building type descriptions, structural loss estimation, 

damage state probabilities as well as wind speed probability, recovery, and loss of use 

functions that are used in this formulation are also covered in detail. 

The following assumptions are made in the computation of resilience in this 

dissertation: 

1. Only structural losses are taken into consideration. Non-structural losses are not 

included in the formulation. 

2. Only damages due to hurricane winds are taken into consideration. Other 

damages resulting from flooding and debris due to a hurricane are not included. 

3. Terrain effects such as the effects of the densities and heights of the buildings 

and trees in the vicinity of the building for which resilience is computed are not 

taken into consideration. 

4. It is assumed that recovery actions will start immediately after a hurricane event. 

5. It is assumed that the system of interest will continuously recover without 

interruption and its functionality will go back to somewhere close to its original 

value at the end of the expected recovery time after a hurricane. 

6. It is also assumed that full recovery is not possible, although recovery can be 

very close to full recovery. 
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7. Exponential, normal, linear and sinusoidal recovery functions as well as a 

combination of these recovery functions are used to represent recovery for 

different damage states. Exponential, normal, linear, and sinusoidal recovery 

functions are respectively assigned to minor damage, moderate damage, severe 

damage, and destruction in the combined recovery function. It is assumed that 

recovery from a hurricane can be modeled by one of these five representations. 

8. It is assumed that loss ratios, which are the ratios of repair costs to replacement 

costs, have uniform distributions with mean values of 0.05,0.2,0.45, and 0.8, 

minimum values of 0, 0.1,0.3, and 0.6, and maximum values of 0.1, 0.3,0.6, and 

1 for minor damage, moderate damage, severe damage and destruction, 

respectively. 

9. Actual recovery times are also used for damage states. The actual recovery time 

can be less than, equal to, or greater than the expected recovery time for each 

damage state. Actual recovery times for minor damage, moderate damage, 

severe damage and destruction are assumed to have Rayleigh distributions with 

mean values of 5,120,360, and 720, respectively. 

10. Average wind speed for South Florida is used and it is assumed to have a uniform 

distribution with mean of 9.2 mph, and minimum and maximum values of 7.9 

and 10.5 mph, respectively. 

11. Since fragility curves taken from HAZUS*mh pertain to residential buildings in 

South Florida, the computed resilience data mostly represent that region. 
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12. In order to be able to interpret the computed resilience data, a dashboard 

representation consisting of better, green, yellow, and red zones is defined. The 

resilience value associated with moderate damage followed by a linear recovery 

within the expected recovery time is assumed to be the border between the red 

to yellow zones. The resilience value associated with minor damage followed by 

a linear recovery within the expected recovery time is assumed to the border 

between the green to yellow zone. 

3.1 Formulation of Resilience 

A group of researchers from Multidisciplinary Center for Earthquake Engineering 

Research (MCEER) developed a methodology for the quantification of resilience against 

an earthquake disaster, as explained in Chapter 2. They represented the functionality of 

a system as Q (Cimellaro et al., 2010). In their study, the value of Q ranges between 0% 

and 100% where 0% means that no service is available whereas 100% indicates that 

there is no degradation in service. If a disruption occurs at time, toe, Q will suddenly drop 

to a value below 100%. The service is assumed to be fully recovered when Q resumes to 

100% after a recovery time, TRE, is spent. Then, resilience is defined graphically as the 

normalized shaded area underneath Q, as shown in Figure 3.1. Thus, resilience, R, is 

expressed as (Bruneau et al., 2003; Bruneau & Reinhorn, 2007): 

'o e+Tre 

(3.1) 
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The functionality of a system is defined as (Cimeiiaro et al. 2006; Cimeiiaro, 2008a): 

£?(0= ~~(*0£ + -^)]}/rec(*>*0E»^/Ui) (3-2) 

where 

* : Time, 

L : Loss function, 

/ : Earthquake intensity, 

TRE : Recovery time for event E, 

H : Heaviside step function, 

t0E : Time of occurrence for event £, and 

frec : Recovery function. 

Functionality4 

m  (%) 

100 

organtMtfornf* 

Desired 
FundBonSty 

Um.i 
'primary source 

Time 

Figure 3.1: Schematic representation of seismic resilience (adapted from Cimeiiaro et al., 2010). 
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Cimellaro et al. (2010) provided two different definitions for resilience. In one of 

these definitions, resilience is considered over a control time which could be the life 

cycle or life span, TLc, of a system. There could be multiple disaster events during this 

time period as shown in Figure 3.1 (Cimellaro et al. 2006). In the other definition, 

resilience is evaluated over the recovery time associated with a single event such as one 

of the two events shown in Figure 3.1 after Q drops suddenly to a value below 100%. In 

this dissertation, resilience of residential buildings is considered for the case of a single 

event. 

Cimellaro et al. (2010) also claimed that it was possible to describe different 

types of functionality for different events. They assumed that the type of disaster had an 

effect on the description of functionality. 

A more comprehensive resilience formulation that has unique features is 

proposed in this dissertation. Original contributions of the methodology presented in 

this dissertation are the following: 

• The methodology was developed for a category of a single hurricane event. 

• The formulation can be used to compute resilience for individual residential 

building types or a community consisting of various building types. 

• Fragility curves for different damage states are incorporated from HAZUS*MH. 

• Wind speed probability distribution is used to include the effects of winds within 

the range of wind speeds for the hurricane category considered. 

• One of the four recovery functions can be assigned to all damage states. In 

addition, a different recovery function can be assigned to each damage state. 
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• An actual recovery time which can be less than, equal to, or greater than the 

expected recovery time is used for each damage state. 

• Monte Carlo and sensitivity analyses were performed by assigning probability 

distributions to resilience parameters and evaluating how much resilience 

changes with the variations of these parameters. 

• A dashboard representation consisting of green, yellow, and red zones is 

developed for visualization of resilience, which is helpful in assessing the degree 

of resilience for decision makers. 

• The formulation is done for certain percentage of recovery that is close to full 

recovery since full recovery is not possible in most cases. 

In this dissertation, resilience of a general building type is formulated for each 

hurricane category as: 

(3.3) 

where 

(3.4) 
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and 
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: Resilience of a building (%), 

: Wind speed, 

: Minimum value of wind speed for the hurricane category considered, 

: Maximum value of wind speed for the hurricane category considered, 

: Expected recovery time in which structural losses are predicted to be 

eliminated (also known as loss of use), 

: Time, 

: Functionality, 

: Distribution for probability of having winds with a speed of w, 

: Number of damage states, 

: Structural losses for damage state j, 

: Recovery function for damage state j, 

: Actual recovery time. 

It is possible to express (3.3) as: 

(3.5) 
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where 

T (w) 

f'^=T{w) (3.6) 

is the integral of the recovery function for damage state j. 

3.1.1 Damage State and Building Type Descriptions 

As mentioned earlier, the approach of HAZUS*mh for structural damage evaluation is 

component based. In HAZUS*mh, buildings are considered as envelopes and it is assumed 

that if these envelopes are exposed to winds due to a hurricane, buildings will probably 

have damage. It is necessary to know how much damage could be experienced by 

different building types when buildings are exposed to hurricane winds. Vann and 

McDonald (1978) first defined the damage states for manufactured houses. Vickery et 

al. (2006) used a similar approach to develop damage state descriptions for all types of 

buildings that are defined in HAZUS>mh. In this dissertation, descriptions of damage 

states for various building types are taken from HAZUS*mh in order to use them in the 

formulation of resilience. HAZUS*mh has five damage state descriptions according to 

external components and cladding of buildings. 

The summation in (3.4) is over N<is = 4 different damage states; minor damage 

(/' =1), moderate damage {j =2), severe damage (/' =3) and destruction (j =4), which are 

described in Table 3.1. There is also a damage state representing no damage or very 
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minor damage, but it is not included in (3.4) since it will have either no or negligible 

contribution. 

Table 3.1: Damage states for residential buildings (HAZUS 
2009). 

MR4 Hurricane Model Technical Manual, 
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Damages to exterior components and cladding of buildings can be failures of 

windows, roof cover, roof deck, joints, and walls (wood frame and masonry) (Vickery et 

al., 2006). HAZUS*mh uses load and resistance methodology and categorizes building 

types as residential buildings, manufactured homes, marginally-engineered or non-

engineered hotels/motels, and multi-family residential buildings, low rise masonry strip 

mall buildings, pre-engineered metal buildings, engineered residential and commercial 

buildings, and industrial buildings. Examples of building types are shown in Figure 3.2. 

Residential buildings can be considered to be almost 60-70% of all the buildings 

in a community. Hence, in order to evaluate and compare resilience of buildings, 

different structural characteristics of residential buildings are taken into consideration in 

this dissertation. This is achieved by using HAZUS*mh descriptions of structurally 
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different residential buildings. Damage state curves (so called fragility curves), which 

represent the probabilities of being in a certain damage state or a higher damage state 

versus maximum peak wind speed at 10 meters above an open terrain, are used to 

compute resilience. Damage state curves for residential buildings with different 

structural characteristics used in this dissertation are given in Appendix C. 
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Figure 3.2: Examples of building types (HAZUS#mh MR4 Hurricane Model Technical Manual, 2009). 

3.2 Structural Loss Estimation 

Loss estimation methodologies have been searched to find the best representation for 

structural loss. The approaches to loss estimation are mostly probabilistic (Jain et al., 

2005). Uncertainties are always a part of any type of loss study for disasters (Garrick, 
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2008). Every specific scenario has different uncertainties. Some of the approaches that 

helped with the formulation of the structural loss in this dissertation are explained next. 

Vickery et al. (2006) developed a loss estimation methodology that was 

implemented in HAZUS*mh for hurricanes. They developed a model which can be run in 

either a probabilistic or a deterministic mode to estimate losses. The model combined 

terrain dependent loss functions with open terrain peak gust wind speeds evaluated at 

the centroid of each census tract. In the probabilistic mode of operation, peak gust wind 

speeds were obtained from a 100,000-year hurricane simulation which was described by 

Vickery et al. (2006). They estimated losses as: 

where 

Lt : Losses associated with any given simulated storm /', 

N : Number of census tracts in the region studied, 

M : Number of different building types considered, 

C jk : Total replacement cost or value of all buildings of type k in census tract j, 

lk : Loss ratio from the loss functions for building type k, 

Z0j : Value of the surface roughness in census tract j, 

Vy : Peak gust open terrain wind speed produced by storm i in census tract j. 

(3.7) 
j=\ k=1 
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Loss estimation methodologies are well developed for earthquake scenarios in 

the literature. Cimellaro (2008b) claimed that researchers could use their preferred loss 

estimation methodology to estimate losses for the evaluation of resilience. Losses 

generated by natural disasters are different and very uncertain in nature for each 

specific scenario, but it could be possible to find general parameters for losses 

(Cimellaro, 2010). Cimellaro defined loss as a function of intensity of an earthquake and 

recovery time (loss of use). He expressed the total loss as a combination of structural 

and nonstructural losses as: 

(3.8) 

where 

L : Total losses, 

I : Event intensity, 

TR£ : Recovery time (loss of use), 

Ls : Structural losses, 

LNS : Nonstructural losses. 

Cimellaro (2010) defined structural losses as a ratio of building repair costs to 

building replacement costs as: 
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M')-Z 
M  

T, ft+4) 
;.f (i+>;) 

(3.9) 
.1=1 

where 

n : Total number of damage states considered, 

CS j  : Building repair costs associated with damage state j, 

Is : Building replacement costs, 

7] : Time range in years between initial investments and time of occurrence of an 

extreme event, 

8i : Annual depreciation rate, 

: Annual discount rate, 

Pj : Probability of exceeding a performance limit state j with the condition that an 

extreme event of intensity, /, occurs (also known as fragility function). 

Cimellaro (2008b) defined nonstructural losses with four parameters, which are 

direct economic losses, direct causalities, indirect economic losses, and indirect 

causalities. He defined these four parameters as a function of recovery time. 

Nonstructural direct economic losses can be expressed as: 

Lns,DE(/)= TT ^jWk^NS,DE,k{^) (3.10) 
"NS k=1 
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where k represents a component of nonstructural elements which could be ceilings, 

elevators, piping systems, etc. 

Cimellaro (2008b) defined nonstructural direct causalities as a ratio of the 

number of people who are injured or dead to the total number of people in order to 

avoid assigning monetary values. Nonstructural indirect economic losses are a function 

of both event intensity and recovery time. These types of losses could be related to 

business interruptions, rental income losses, relocation expenses, etc. However, 

nonstructural indirect causalities can be expressed as a ratio of the number of injured or 

dead people, whose injuries or deaths are due to service interruptions, to the total 

number of people. Overall, total nonstructural losses can be given as a combination of 

nonstructural direct and indirect losses. 

As mentioned earlier, only structural losses are considered in this dissertation. 

After searching for a good representation of structural losses for any type of disaster, 

the direct economic structural loss expression given by (3.9) was decided to be modified 

and used in this study. The annual depreciation and discount rates of a building are 

included in (3.9), because it takes all the disasters that occurred during the lifetime of a 

building into consideration. However, these two parameters will not be included in loss 

estimation in this dissertation since only one hurricane event will be taken into 

consideration. In order to estimate structural losses, (3.9) is modified in this study and 

defined for each damage state as: 
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1t «=1 
(3.11) 

D . . . S *  

h ,  

i=1 

(3.12) 

(3.13) 

: Total replacement cost for all building types, 

: Number of different building types, 

: Replacement cost for building type / in damage state j, 

: Loss ratio corresponding to the ratio of building repair costs to building 

replacement costs for building type / in damage state j, 

/ w) ; Probability to be in damage state j, at a given wind speed for building 

type /, 

: Repair costs for building type / in damage state j. 
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The summation in (3.11) weighs repair costs for each building type with the 

multiplication of their damage state probabilities and their replacement costs, and adds 

them together over all building types. The resulting expression is normalized by the total 

replacement cost of all buildings. 

It should be noted that the structural loss estimation in (3.11) takes into 

consideration the probabilities of being in different damage states for different building 

types unlike an earlier study by Cimellaro (2006). Therefore, the structural loss 

estimation function in (3.11) is an improved version of the function used in the study by 

Cimellaro. Damage state probabilities available from HAZUS*mh are used in (3.11). 

3.2.1 Damage State Probabilities and their Interpolation 

HAZUS*mh generates graphs called fragility curves as wind speed versus probabilities of 

being in a certain damage state or a higher damage state for various building types, 

which can be referred as the conditional probabilities of exceedance. Given the 

maximum wind speed for a particular wind event, the fragility curve for a specific 

building type provides the likelihood of having a damage exceeding a certain threshold. 

The fragility curves explain how a specified structure can withstand hurricane winds 

(Cope, 2004). An example fragility curve that was extracted from a building damage 

function graph of HAZUS*mh is shown in Figure 3.3 for a one story residential building. 

The fragility curve data in Figure 3.3 were interpolated with first, second, third, 

fourth, fifth, and sixth order polynomials to find out the minimum order of the 

interpolation polynomial that is needed to achieve sufficient accuracy. Comparison 

between Figures 3.4.a-3.4.f suggests that interpolation should be done with a sixth 
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order polynomial to be able to achieve good accuracy. Hence, a sixth order polynomial is 

used in this dissertation to fit the conditional probabilities of exceedance. Interpolation 

of the fragility data is necessary to be able to compute the probabilities for any given 

wind speed between 74 and 130 mph, as shown in Figure 3.4. 
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Figure 3.3: Data for conditional probabilities of exceedance for different damage states (HAZUS*MH 

MR4 Hurricane Model Technical Manual, 2009). 

However, the methodology presented in this dissertation requires determination 

of the probabilities of being in a damage state from the probabilities of exceedance for 

each damage state as: 
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Pj{dsA /w)=Pi(ds4 or higher / w) (3.l4.a) 

Pids3/ w) = Pj(ds3 or higher / w)— Pt{ds4 or higher / w) (3.14.b) 

PidsJ w)= P;{ds2 or higher /\v)—Pi(ds} or higher/w) (3.l4.c) 

/>(<&,/ w)= Pj(dsx or higher / w)— Pj{ds2 or higher / w) (3.14.d) 

which can be evaluated for each building type and incorporated into (3.11). 
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(a) First order polynomial interpolation. (b) Second order polynomial interpolation. 

WMwMdUTVft) MMWMdonpni 

(c) Third order polynomial interpolation. (d) Fourth order polynomial interpolation. 

120 
Wtad WMdOTVtfi) 

120 

(e) Fifth order polynomial interpolation. (f) Sixth order polynomial interpolation. 

Figure 3.4: Comparison of data and its polynomial interpolations for conditional probabilities of 
exceedance for different damage states. 
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3.3 Wind Speed Probability 

Russell (1968,1971) was the first who applied mathematical simulation methods to 

estimate hurricane wind speed for the Texas Coast (HAZUS*mh MR4, Hurricane Model 

Technical Manual, 2009). The same approach was adapted to parts of the U.S. Coastline 

(Batts et al., 1980; Georgiou et al., 1983; Georgiou, 1985; Russell & Schueller, 1974; 

Twisdale & Dunn, 1983; Tryggvason et al., 1976; Vickery & Twisdale, 1995a, 1995b). 

Estimation of hurricane wind speed is important, because it can be used for risk analysis 

or other purposes (Li & Ellingwood, 2006). Fundamental climatological modeling 

principles and data were used to simulate probabilistically hurricane wind speed. Basic 

steps were taken to obtain statistical distributions of key hurricane parameters first. 

These parameters are central pressure difference, radius to maximum winds, heading, 

translation speed, and coast crossing position or distance of the closest approach. A 

Monte Carlo simulation was performed to sample the statistical distributions of these 

key hurricane parameters. During the simulation, wind speed was also recorded when a 

mathematical representation of a hurricane passed the site of interest. 

According to the studies of Peterka and Shahid (1998), Batts et al. (1980) and 

Vickery et al. (2000), the most appropriate and widely accepted distribution for wind 

speed prediction is Weibull distribution, which is given by; 

(3.15) 
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where k is a positive integer called shape parameter and a is a positive real number 

called scale parameter. In this dissertation, P(w) in (3.3) will be represented with the 

following probability distribution: 

which is a special case of the Weibull distribution for k =1. The wind speed distribution 

in (3.16) can be used in (3.3) where the limits of the integrations, wi and w2, can be 

obtained from the Saffir-Simpson scale given in Table 2.2 for each hurricane category. 

3.4 Recovery Function 

The majority of hurricane loss estimation models focus on pre-disaster conditions. Thus, 

it is hard to find any information in the literature about post-disaster conditions, 

especially recovery models for hurricanes. 

Defining recovery is very difficult since the recovery process is very complex and 

has various dimensions. For instance, recovery of a poor neighborhood from a disaster is 

usually slower compared to that of a rich neighborhood, as expected. There is no 

suggested representation in the literature for recovery from hurricanes. Some recovery 

models are available for earthquake studies. For example, Miles and Chang (2006) did a 

comprehensive recovery study for earthquakes and applied their model to the Kobe 

earthquake. In addition, Cimellaro et al. (2010) suggested some simplified recovery 

functions that are functions of time. In their study, an appropriate function was selected 

(3.16) 
a 
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based on the response of a system or a society that was affected. They proposed using 

linear, exponential, or trigonometric recovery functions depending on preparedness, 

resources, and societal response. The linear recovery function was used when there was 

no information about preparedness and available resources as well as societal response. 

The exponential recovery function was found to be suitable when the initial response 

was fast because of the high level of resources and preparedness, and it slowed down 

later (Kafali & Grigoriu, 2005). On the other hand, the trigonometric recovery function 

was considered when the response was initially slow due to the lack of resources and 

preparedness, and it improved overtime (Chang & Shinozuka, 2004). The linear, 

exponential and trigonometric recovery functions are expressed, respectively, as: 

where a and b are constants, and Tr£ and toe were defined earlier in (3.2). 

Since there is no representation for recovery from hurricanes in the literature, 

the approach for recovery representation in this dissertation has been inspired from the 

above mentioned earthquake study by Cimellaro et al. (2010), but a different 

representation where the recovery function for each damage state can be either the 

same or different has been proposed. The same recovery function can be used for all 

damage states. Alternatively, since recovery process can take various forms as a 

(3.17.a) 

(3.17.b) 

(3.17.c) 
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function of time for different damage states, a different recovery function can be used 

to represent the process for each damage state. If wind speed is not too high, there may 

be only minor or moderate damage, and recovery can be very fast. On the other hand, if 

wind speed is very high, there may be severe damage or destruction, and recovery can 

be very slow. Assignment of separate recovery functions to different damage states is 

an original contribution of this dissertation. 

Exponential, normal, linear, and sinusoidal recovery functions, which are given 

respectively as: 

(B.18.a) 

(3.18.b) 

(3.18.C) 

cos arccos 
2arccos(l-/l/100) 

o, f > 2_i L 

2arccos(l-A/100) 
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are considered in this dissertation. Since it does not seem to be practical to achieve 

100% recovery, (3.18.a)-(3.18.d) are defined so that recovery is assumed to be complete 

when A% of the initial loss is recovered at Ta(w). It should be noted that actual and 

expected recovery times at a given wind speed, w, are denoted in this dissertation as 

Ta(w) and Te(w), respectively, which are explained in more detail in the next section. 

In this dissertation, three different cases are considered for recovery which are 

represented by Ta(w)= Te(w)r Ta(w)< Te(w),ar\di Ta(w)> Te(w). The functionality associated 

with the recovery functions in (3.18.a)-(3.18.d) are shown for these three cases in 

Figures 3.5-3.7. Resilience is proportional to the gray area. If Tg(w)= T^w), recovery is 

completed at the expected time. If Ta(w)< Te(w), recovery is faster than expected, 

resulting in a larger gray area and higher resilience. If Ta(w)> Te(w), recovery takes 

longer than the expected time, shrinking the gray area and lowering the resilience. 
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T.(w) 

(a) Exponential recovery function. 

T.(w) 

(c) Linear recovery function. 

T,(w) 

(b) Normal recovery function. 

T.(w) 

(d) Sinusoidal recovery function. 

Figure 3.5: Functionality for Ta(w)=Te(w) with T,(w)=100 and Te(w)=100. 
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T.(w) 

(a) Exponential recovery function. 

T.(w) 

(c) Linear recovery function. 

T,(w) 

(b) Normal recovery function. 

T.(w) 

(d) Sinusoidal recovery function. 

Figure 3.6: Functionality for T,(w)<Te(w) with T,(w)=80 and Te(w)=100. 
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T.<w) 

(a) Exponential recovery function. 

T.(w) 

(c) Linear recovery function. 

T,(w) 

(b) Normal recovery function. 

T.(w) 

(d) Sinusoidal recovery function. 

Figure 3.7: Functionality for T,(w)>Te(w) with T,(w)=125 and T,(w)=100. 

It should be noted that the integrals of the recovery functions in (3.18.a)-(3.18.d) 

can be analytically evaluated to obtain: 

- \  f iE)\t T (w)]dt = Ta{w) 
I iJrec l , ^ wfi-jYz l0g(l -WeM 

exp log(l-A) iM 
T„M 

-1 

T,W) Jo 
jk"[».r.(w)]*=|g 

\og(\-x)ra(w) 
T,(w) 

' (3.19.a) 

" (3.19.b) 
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7-» J„ 
] f:,LA<,L(»Pt=-

\JM_ lM< 7  
2 X T , U ) [  t L \  

,_eM uw)_ 

2r.W tM 

nM J„ j/rkr.M]* 
r» Ta (w) 2 arccos (l - X) 

T ( W )  arccos 
Ta (w) sin [arccos (l-A )Te(w)/Ta(w)] Ta(w) 2 arccos (l-/I) 

arccos (l - X)Te (w) ' Te (w) 

(3.19.C) 

(3.19.d) 

3.5 Loss of Use Function 

It is very critical to estimate recovery time accurately in order to quantify resilience. 

Even HAZUS*mh has a very rough estimate of recovery time for hurricanes which comes 

from an earthquake study. In HAZUS*mh, it is assumed that everything goes back to its 

normal state two years after a hurricane occurs. 

Expected and actual losses of use in terms of days are identified as a function of 

wind speed to help with the quantification of resilience in this dissertation. Even though 

the HAZUS#mh hurricane module gives loss of use in its hurricane analysis for residential 

buildings, the methodology to determine loss of use was originally developed for an 

earthquake model. Five damage states, which are no damage, slight damage, moderate 

damage, extensive damage and complete damage, are defined in an earthquake model, 

corresponding to damages of 0%, 2%, 10%, 50%, and 100%, respectively. In an 

earthquake model, loss of use for these five damage states is given as 0, 5,120, 360, and 

720 days, respectively. These values are also used in a hurricane model as expected loss 
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of use in days for no damage, minor damage, moderate damage, severe damage, and 

destruction, respectively. A linear interpolation is used in HAZUS*mh to compute 

expected recovery times for loss ratios different from these five cases. As it can be 

understood from the description of the methodology of HAZUS*mh for the 

determination of loss of use due to hurricanes, the methodology roughly computes loss 

of use that is only valid for residential buildings. 

Based on the expected loss of use pertaining to different damage states in 

HAZUS*mh, expected loss of use is expressed in this dissertation as: 

TrM=T^P,(ds,/w)+Tf'Pl{ds2/w)+T^'Pt(ds,/w)+T^i'Pl(<fc4/h>) (3.20) 

where expected recovery time is weighed with the relevant damage state probability for 

each damage state and; 

(3.21.a) 

TE
M = 120 (3.21.b) 

TE
0) = 360 (3.21.C) 

re
(4) =720 (3.21.d) 
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are expected recovery times for minor damage, moderate damage, severe damage and 

destruction, respectively, based on HAZUS*mh as explained above. The actual recovery 

time is also defined as: 

TSw)=T^P l(ds,/w)+T^P i(ds2/W)+T^P l(ds,/w)+T^P i(ds4/w) (3.22) 

where T0
,1,

T TA
<2>, TA

<3>, and TJ4> are the actual recovery times for minor damage, 

moderate damage, severe damage, and destruction, respectively. 

3.6 Dashboard for Resilience Acceptability 

In order to be able to evaluate resilience data better, green, yellow, and red zones are 

defined for resilience. It is desired to have resilience of a building against a certain 

category hurricane to be in the green zone, which shows that the building is sufficiently 

resilient and only minor damage or less is likely to be experienced in case of such a 

hurricane. If resilience falls into the yellow zone, it means that the building is more 

vulnerable while being quite resilient, and moderate damage or less can most probably 

happen. If resilience is in the red zone, it raises a red flag suggesting that resilience has 

to be improved to avoid a possible severe damage or destruction in case of a hurricane 

with the category for which resilience is evaluated. The green, yellow and red zones are 

defined as shown in Figure 3.8. The boundary between red and yellow zones, Rry, is 

defined as: 
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(3.23) 
e 0 

which is obtained by taking Pi(dsi/w)=0, Pj(ds2/w)=l, P,(ds3/w)=0, Pj(ds4/w)=0, Te(w)=Te
<2) 

and using linear recovery in (3.3). Therefore, R^, corresponds to the resilience of a 

building that has moderate damage with probability of 1 and goes through linear 

recovery within the expected recovery time for moderate damage. The boundary 

between yellow and green zones, Ryg, is also defined as: 

which is obtained by taking Pi(dsi/w)=l, Pj(ds2/w)=0, Pj(ds3/w)=0, Pj(ds4/w)=0, Te(w)=Te
(1> 

and using linear recovery in (3.3). Therefore, Ryg corresponds to the resilience of a 

building that has minor damage with probability of 1 and goes through linear recovery 

within the expected recovery time for minor damage. Since the integral over the 

recovery function is not a function of wind speed any more for Rry and Ryg, it can be 

taken out of the wind speed integral, and the wind speed integrals in the numerator and 

denominator can be cancelled out in (3.3). The dashboard representation involving 

green, yellow, and red zones are used in resilience histograms in Chapter 4. 

(3.24) 
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The parameters that are used in the resilience expression given by (3.3) are 

assumed to have certain probability distributions. Monte Carlo analysis was performed 

to assess the effects of changes in these parameters on resilience. For this purpose, a 

replica consisting of 10,000 random numbers for loss ratio and actual recovery time of 

each damage state, and average wind speed was generated based on their probability 

distributions. Then, resilience was computed for 30 replicas. Computed resilience was 

visualized using the above defined dashboard that is shown in Figure 3.8 for Category 1, 

2 and 3 hurricanes. A more detailed explanation on displaying the results of resilience 

on dashboard is given in Chapter 4. 

o R,, 100 

Figure 3.8: Definition of red, yellow and green zones for resilience. 
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CHAPTER 4 

RESULTS 

The methodology for calculating resilience has been applied to residential 

buildings that have different roof shapes, walls, roof to wall connections, and stories. 

Damage state graphs (so called fragility curves) that show the probability of being in a 

certain damage state versus storm-maximum peak gust speed were found in the 

Appendices of HAZUS*mh Hurricane Technical Manual for residential buildings with 

different components (HAZUS*mh MR4 Appendices of Hurricane Model Technical 

Manual, 2009). These graphs were obtained by damage simulations which used a 

20,000-year hurricane statistics on damage states. Selected residential building graphs 

are given in Appendix C. Detailed building descriptions, which are supposed to 

characterize buildings in the East Coast especially in Miami, Florida area, can be found in 

HAZUS*mh. All the modeled residential buildings used in this dissertation have asphalt 

shingle roofs, single pane annealed glass windows, tempered glass sliding doors, and no 

garages. 

Building components which are believed to play an important role of holding the 

whole structure together during high winds are walls, roof shape, roof sheathing, 

number of stories, and shutters. In the following sections, various examples are 

presented where resilience was calculated after implementing the proposed 

methodology in Matlab° for Category 1, 2 and 3 hurricane scenarios and the generated 
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resilience data are compared for different residential building types. These building 

types are explained in Section 4.2 in more detail. 

4.1 Functionality versus Time and Wind Speed 

In this section, variation of the functionality of a residential building of type A with time 

and wind speed is demonstrated. As mentioned earlier, the recovery function for each 

damage state can be either the same or different. The following cases are considered 

for the functionality in (3.4) based on the selection of different recovery functions: 

1. All damage states are assumed to have exponential recovery function; 

Q(t, w)=l -^Lj (w)/;ef [t, Ta (w)] = 1 - /r<f [r, Ta (w)j£ Lj (w) (4.1} 

j=1 7=1 

2. All damage states are assumed to have normal recovery function; 

(w)/r' [<, Ta (w)] = 1 - /r' ['. T„ (,)]i Lj (w) (4.2, 
j=l M 

3. All damage states are assumed to have linear recovery function; 

Q(t, w)=l -^Lj (w)f£ [r, Ta (w)] = 1 - [/, Ta (w)]^ Lj (w) {4.3) 
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4. All damage states are assumed to have sinusoidal recovery function; 

e(/, h>)=1-^L, (w)/«> [t,T„ (h.)]= !-/«' [t,T0 (w&Lj (w) (4.4, 

5. Damage states have separate recovery functions such that minor damage, 

moderate damage, severe damage, and destruction are assumed to have 

exponential, normal, linear, and sinusoidal recovery functions, resulting in a 

combined recovery function; 

The functionalities for these cases are plotted versus time (days) and wind speed 

(mph) as shown in Figures 4.1, 4.2 and 4.3 for Category 1,2 and 3 hurricanes, 

respectively. The maximum expected recovery time, Te(w), that is given by (3.20) is 8.8, 

51.84 and 299.93 days for Category 1,2 and 3 hurricanes, respectively, which 

corresponds to the maximum wind speed in each category for building type A. In 

addition, the actual recovery time, T0(w), is assumed to be equal to Te(w) in Figures 4.1-

4.3. The recovery for the case associated with (4.5) is observed in Figures 4.1.e, 4.2.e 

and 4.3.e to be between exponential and normal, between normal and linear, and 

between linear and sinusoidal, respectively. It is observed in Figures 4.1-4.3 that 

(4.5) 
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exponential recovery after a Category 1 hurricane is the fastest whereas sinusoidal 

recovery after a Category 3 hurricane is the slowest. 

nil 

(a) Exponential recovery function. 

(c) Linear recovery function. 

(b) Normal recovery function. 

MS 

(d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.1: Functionality versus time and wind speed against a Category 1 hurricane for different 
recovery functions. 
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3P 

Mn0 
(a) Exponential recovery function. (b) Normal recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

*-I 

(e) Combined recovery function. 

Figure 4.2: Functionality versus time and wind speed against a Category 2 hurricane for different 
recovery functions 
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•9 , 

••4 

•*4 
«8 J 

(a) Exponential recovery function. (b) Normal recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.3: Functionality versus time and wind speed against a Category 3 hurricane for different 
recovery functions. 
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4.2 Monte Carlo Analysis 

A resilience expression in (3.3) has multiple parameters with uncertain values. 

Therefore, a Monte Carlo analysis was performed to see how resilience varies when 

these parameters change. Among the parameters, average wind speed, loss ratios and 

actual recovery times for damage states are assumed to have probability distributions 

given by: 

(46.a) 

(4.6.b) 

(4.6.C) 

(4.6.d) 

ru> _ 
(4.6.e) 

(4.6.f) 

(4.6.g) 

(4.6.h) 

(4.6.1) 

It should be noted that U(a,b) in (4.6.a)-(4.6.d) and (4.6.i) represents uniform 

distribution between a and b with a probability density function 
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/t/W = 

0, 

1 

b — a 
0, 

x < a  

a<>x<ib 

x >b 

(4.7) 

and mean, (a+b)/2, and variance, (b-af/12. In addition, in (4.6.e)-(4.6.h) denotes 

Rayleigh distribution of mode o with probability density function 

/*(*) = 
X -x112a1 

o, 

x > 0  

x < 0 
(4.8) 

and mean and variance of <7V^72 and <J2(4 — 7t)l 2, respectively. 

A Monte Carlo analysis was performed for six different building types shown in 

Table 4.1 by generating a replica of 10,000 random numbers for these parameters based 

on the distributions in (4.6.a)-(4.6.i). Resilience histograms for Monte Carlo analysis are 

presented for building type A in this section. 

Table 4.1: Features of six different building types. 
Building type Walls Stories Roof Sheathing Roof/Wall 

A URM 1 Gable 6d Strap 

B URM 1 Hip 6d Strap 

C URM 1 Gable 6d Toe-nail 

D WFR 2 Gable 6d Strap 

E URM 2 Gable 6d Strap 

F URM 1 Gable 8d Strap 



www.manaraa.com

73 

For all the building types in Table 4.1, resilience data are presented later. 

Histograms for Dy in (4.6.a)-(4.6.d), T0
W in (4.6.e)-(4.6.h) and a in (4.6.i) are shown in 

Figures 4.4, 4.5 and 4.6, respectively. 

(c) D,,3 (d) Djt4 

Figure 4.4: Histograms of loss ratios with uniform distribution for damage states. 

Resilience was computed by substituting the randomly generated numbers into 

the recovery functions given by (4.1)-(4.5), and the resilience expression in (3.3) for 

Category 1, 2 and 3 hurricanes. The resulting histograms for resilience against Category 
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1, 2 and 3 hurricanes are shown in Figures 4.7,4.8 and 4.9, respectively. Each one of 

Figures 4.7-4.9 shows resilience for different recovery functions that are given in (4.1)-

(4.5). It should be noted that 10,000 resilience values were generated from 10,000 

random numbers for each parameter. The range of resilience values is divided into 100 

intervals and the number of resilience values that fall into each interval is plotted on a 

dashboard in Figures 4.7-4.9. Therefore, vertical axis represents the number of 

resilience values for each interval in the horizontal axis. 

(c) r<3) (d)r<4) 

Figure 4.5: Histograms of actual recovery times for damage states. 
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Figure 4.6: Histogram of average wind speed, a, with uniform distribution in Miami, FL 

In addition, mean, standard deviation, minimum, and maximum values of 

resilience as well as the percentages of resilience to be in green, yellow, and red zones 

are given for different recovery functions and different hurricane categories in Figures 

4.7-4.9. The same representation is used to plot resilience throughout this dissertation. 

4.3 Sensitivity Analysis 

In the previous section, a Monte Carlo analysis was presented where probability 

distributions were assigned to average wind speed as well as loss ratios and actual 

recovery times for damage states, and random numbers were generated for all these 

parameters based on the distributions. In this section, a sensitivity analysis is presented 

to predict the sensitivity of resilience index to each one of these parameters. Unlike a 

Monte Carlo analysis where random numbers were generated for all parameters, 

random numbers were generated only for the parameter for which sensitivity of 

resilience was evaluated. Similar to Monte Carlo analysis, sensitivity analysis was also 

performed for building type A as an example by generating a replica of 10,000 random 
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numbers for each parameter based on the distribution for the parameter in (4.6.a)-

(4.6.i). A sensitivity analysis that was individually performed for each variable is 

presented in the following sections. 
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(a) Exponential recovery function. (b) Normal recovery function. 

(d) Sinusoidal recovery function. (c) Linear recovery function. 

(e) Combined recovery function. 

Figure 4.7: Histograms of resilience against a Category 1 hurricane for different recovery functions in a 
Monte Carlo analysis. 
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In: 97 8677 
d«r. 1 Ote+OOO 
99.8504 
91.2178 

Ln: *69.19 
hk *30.81 
*0 

In: 98.8995 
<tov. 5.79*401 
99.9409 
95.3822 
bn' *96 01 
wr. *1.99 
*0 

(a) Exponential recovery function. (b) Normal recovery function. 

(d) Sinusoidal recovery function. (c) Linear recovery function. 

jn. 98.2316 
daw: 8.47e-001 
99.8815 
93.2719 
Hi. *82.44 
\uf. *17.56 
*0 

(e) Combined recovery function. 

Figure 4.8: Histograms of resilience against a Category 2 hurricane for different recovery functions in a 
Monte Carlo analysis. 
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(a) Exponential recovery function. (b) Normal recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.9: Histograms of resilience against a Category 3 hurricane for different recovery functions in a 
Monte Carlo analysis. 
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4.3.1 Sensitivity of Resilience Index to Loss Ratio for Minor Damage 

Results of the sensitivity of resilience to the loss ratio for minor damage are presented 

in this section. Random numbers were generated for the loss ratio for minor damage 

using the probability distribution, Dhi~ U(0,Q.l) while assigning fixed values to the other 

parameters such that DI/2= 0.2, Di,3= 0.45, DIA= 0.8, TA
(1)=TE

W, T0
(2)=TE<2>, TA

<3)=TE
(3), 

To(4>=Te
<4) and a=9.2. Resilience was computed using all these parameters in (3.3) for 

Category 1, 2 and 3 hurricanes as well as the recovery functions in (4.1)-(4.5). The 

resulting histograms for resilience against Category 1, 2 and 3 hurricanes are shown in 

Figures 4.10,4.11 and 4.12, respectively. Figures 4.10-4.12 shows resilience for different 

recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.10-4.12 that resilience is the least and most 

sensitive to the loss ratio for minor damage for Category 1 and 2 hurricanes, 

respectively. This shows that minor damage is more likely during a Category 2 hurricane, 

whereas no damage and at least moderate damage are expected for Category 1 and 3 

hurricanes, respectively. In addition, resilience is the least and most sensitive to the loss 

ratio for minor damage when the recovery is exponential and sinusoidal, respectively. 

Moreover, resilience against a Category 1 hurricane stays in green zone regardless of 

the type of recovery. On the other hand, resilience moves from green to yellow zone 

and from yellow to red zone as recovery becomes slower for Category 2 and 3 

hurricanes, respectively. 



www.manaraa.com

81 

(b) Normal recovery function, (a) Exponential recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

'*> 9td SLM»4Ca 
HkHMB 

1W tmrnim 
<3NMKKiaO 
Y«|n* HO 

* / 

N2 fM 9*6 994 *4 M9 100 

(e) Combined recovery function. 

Figure 4.10: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for minor damage. 
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Main: 97 8688 
120 Std de* 4 64*001 

Mac 986739 
m Mm: 97 0562 

Green: *7463 
Yalotff %25 37 

« Red: %0 

Mean: 98.8906 
130 Std. dev: 241e-001 

Mac 96.3007 
m Mm: 98.4676 

Green: *100 
Yefcw %0 

« Red: %0 

(a) Exponential recovery function. 

Mean: 97.3938 
'» Std da* 5S7e-001 

Mac 98.3784 
100 Mm: 98.4002 

Green: *46.37 
Yekmr %5363 

» Red: %0 

(c) Linear recovery function. 

Mean: 982132 
<» Sid. da* 241*001 

Mac 98 6323 
m Min: 97.7902 

Green: %100 
YetowttO 

« Red %0 

(b) Normal recovery function. 

SRSSUi 
•70497 

*1M» 

(d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.11: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for minor damage. 
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(a) Exponential recovery function. (b) Normal recovery function. 

Maw: 88.6374 
Std dav: 8.73e-001 
Max: 89.6057 
Mm 87.4582 
Gram: %0 
Yalow: *0 
Rad: %100 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

m m 90 92 9* M 

(e) Combined recovery function. 

Figure 4.12: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for minor damage. 
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4.3.2 Sensitivity of Resilience to Loss Ratio for Moderate Damage 

Results of the sensitivity of resilience to the loss ratio for moderate damage are 

presented in this section. Random numbers were generated for the loss ratio for 

moderate damage using the probability distribution, Dh2~ U(0.1,0.3), while assigning 

fixed values to the other parameters such that Du= 0.05, DI)3= 0.45, DI/4= 0.8, TA
(1)-TE

W, 

Ta<2)=Te
(2}, TJ3)=TJ3>, TJ4>=TJ4> and A=9.2. Resilience was computed using all these 

parameters in (3.3) for Category 1, 2 and 3 hurricanes as well as the recovery functions 

in (4.1)-(4.5). The resulting histograms for resilience against Category 1, 2 and 3 

hurricanes are shown in Figures 4.13,4.14 and 4.15, respectively. Each one of Figures 

4.13-4.15 shows resilience for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.13-4.15 that resilience is the least and most 

sensitive to the loss ratio for moderate damage for Category 1 and 3 hurricanes, 

respectively. This shows that moderate damage is more likely during a Category 3 

hurricane, whereas less than moderate damage is expected for Category 1 and 2 

hurricanes. These findings are consistent with those of the previous section. In addition, 

resilience is the least and most sensitive to the loss ratio for moderate damage when 

the recovery is exponential and sinusoidal, respectively. Moreover, resilience against a 

Category 1 hurricane stays in the green zone regardless of the type of recovery. On the 

other hand, resilience moves from the green to yellow zone and from the yellow to red 

zone as recovery becomes slower for Category 2 and 3 hurricanes, respectively. 
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(b) Normal recovery function. (a) Exponential recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.13: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for moderate damage. 
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(e) Combined recovery function. 

Figure 4.14: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for moderate damage. 
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(b) Normal recovery function. (a) Exponential recovery function. 
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(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.15: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for moderate damage. 
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4.3.3 Sensitivity of Resilience to Loss Ratio for Severe Damage 

Results of the sensitivity of resilience to the loss ratio for severe damage are presented 

in this section. Random numbers were generated for the loss ratio for severe damage 

using the probability distribution, DH3~ U(0.3,0.6), while assigning fixed values to the 

other parameters such that DHL= 0.05, DA= 0.2, D,A= 0.8, TA
(1>=TE

(1), TJ2)=TJ2> , TA
(3>=TE

<3>, 

TJ4,=TE
<4> and a=9.2. Resilience was computed using all these parameters in (3.3) for 

Category 1, 2 and 3 hurricanes as well as the recovery functions in (4.1)-(4.5). The 

resulting histograms for resilience against Category 1, 2 and 3 hurricanes are shown in 

Figures 4.16,4.17 and 4.18, respectively. Each one of Figures 4.16-4.18 shows resilience 

for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.16-4.18 that resilience is the least and most 

sensitive to the loss ratio for severe damage for Category 1 and 3 hurricanes, 

respectively. In fact, resilience against Category 1 is not sensitive to the loss ratio for 

severe damage at all. This shows that severe damage is more likely during a Category 3 

hurricane. These findings are consistent with those of Sections 4.3.1 and 4.3.2. In 

addition, excluding a Category 1 hurricane, resilience is the least and most sensitive to 

the loss ratio for severe damage when the recovery is exponential and sinusoidal, 

respectively. Moreover, resilience against a Category 1 hurricane stays in the green 

zone, whereas it moves from the green to yellow zone and from the yellow to red zone 

as recovery becomes slower for Category 2 and 3 hurricanes, respectively. 
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(e) Combined recovery function. 

Figure 4.16: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for severe damage. 
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(e) Combined recovery function. 

Figure 4.17: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for severe damage. 



www.manaraa.com

91 

(a) Exponential recovery function. (b) Normal recovery function. 
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(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.18: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for severe damage. 
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4.3.4 Sensitivity of Resilience to Loss Ratio for Destruction 

Results of the sensitivity of resilience to the loss ratio for destruction are presented in 

this section. Random numbers were generated for the loss ratio for destruction using 

the probability distribution, Dii4~ U(0.6,l), while assigning fixed values to the other 

parameters such that Du= 0.05, Di2= 0.2, D,i3= 0.45, Ta
<1,=Te

<1), T0
l2)=Te

<2), Ta
<3)=Te

(3), 

TJ4)=TJ4> and a=9.2. Resilience was computed using all these parameters in (3.3) for 

Category 1, 2 and 3 hurricanes as well as the recovery functions in (4.1)-(4.5). The 

resulting histograms for resilience against Category 1,2 and 3 hurricanes are shown in 

Figures 4.19,4.20 and 4.21, respectively. Each one of Figures 4.19-4.21 shows resilience 

for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.19-4.21 that resilience is the least and most 

sensitive to the loss ratio for destruction for Category 1 and 3 hurricanes, respectively. 

In fact, resilience against categories 1 and 2 is not sensitive and negligibly sensitive to 

the loss ratio for destruction, respectively. This shows that destruction is more likely 

during a Category 3 hurricane. These findings are consistent with those of Sections 

4.3.1-4.3.3. In addition, excluding a Category 1 hurricane, resilience is the least and most 

sensitive to the loss ratio for destruction when the recovery is exponential and 

sinusoidal, respectively. Moreover, resilience against a Category 1 hurricane stays in the 

green zone, whereas it moves from the green to yellow zone and from the yellow to red 

zone as recovery becomes slower for Category 2 and 3 hurricanes, respectively. 
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(a) Exponential recovery function. 

MMfcflMltX' •M iterA BILmV 
MKMLMIT 

OmmKIW 
r+mm. -
na**fr 

M 901 902 90S 904 904 907 990 10P 

(b) Normal recovery function. 

«<R| ' 
MKKMI -
MNB WKWKRf 
OMMIHOC, 
rdMUl: 
R«t«0 

191 902 90S »* 9»A 904 90 7 904 909 100 

(c) Linear recovery function. (d) Sinusoidal recovery function. 
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(e) Combined recovery function. 

Figure 4.19: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for destruction. 
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(e) Combined recovery function. 

Figure 4.20: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for destruction. 
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(a) Exponential recovery function. (b) Normal recovery function. 
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(e) Combined recovery function. 

Figure 4.21: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the loss ratio for destruction. 
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4.3.5 Sensitivity of Resilience to Actual Recovery Time for Minor Damage 

Results of the sensitivity of resilience to the actual recovery time for minor damage are 

presented in this section. Random numbers were generated for the actual recovery time 

for minor damage using the probability distribution, ~ ^/2//r ), while 

assigning fixed values to the other parameters such that D,,I= 0.05, DIR2= 0.2, DIJ3= 0.45, 

D/,4= 0.8, TA
<2>=TE

<2>, TJ3)=TJ3}, TA
(4)=TE

L4> and a=9.2. Resilience was computed using all 

these parameters in (3.3) for Category 1, 2 and 3 hurricanes as well as the recovery 

functions in (4.1)-(4.5). The resulting histograms for resilience against Category 1, 2 and 

3 hurricanes are shown in Figures 4.22,4.23 and 4.24, respectively. Each one of Figures 

4.22-4.24 shows resilience for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.22-4.24 that resilience is the least and most 

sensitive to the actual recovery time for minor damage for Category 1 and 2 hurricanes, 

respectively. This shows that minor damage is more likely during a Category 2 hurricane, 

whereas no damage and at least moderate damage are expected for Category 1 and 3 

hurricanes, respectively. These findings are consistent with those of Sections 4.3.1 

associated with the loss ratio for minor damage. In addition, resilience is the least and 

most sensitive to the actual recovery time for minor damage when the recovery is 

exponential and sinusoidal, respectively. Moreover, resilience against a Category 1 

hurricane stays in green zone. It moves from the green to yellow zone and from the 

yellow to red zone as recovery becomes slower for Category 2 and 3 hurricanes, 

respectively. 
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(a) Exponential recovery function. (b) Normal recovery function. 

(d) Sinusoidal recovery function. (c) Linear recovery function. 

(e) Combined recovery function. 

Figure 4.22: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for minor damage. 
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(e) Combined recovery function. 

Figure 4.23: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for minor damage. 
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(d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.24: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for minor damage. 
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4.3.6 Sensitivity of Resilience to Actual Recovery Time for Moderate Damage 

Results of the sensitivity of resilience to the actual recovery time for moderate damage 

are presented in this section. Random numbers were generated for the actual recovery 

time for moderate damage using the probability distribution, T^2) ~ 

while assigning fixed values to the other parameters such that Du= 0.05, Dit2= 0.2, 

0, 3=0.45, Di_4= 0.8, Ta
(1}=Te

(1}, Ta
<3>=Te

(3>, Ta
<4>=Te

<4> and a=9.2. Resilience was computed 

using all these parameters in (3.3) for Category 1, 2 and 3 hurricanes as well as the 

recovery functions in (4.1)-(4.5). The resulting histograms for resilience against Category 

1, 2 and 3 hurricanes are shown in Figures 4.25,4.26 and 4.27, respectively. Each one of 

Figures 4.25-4.27 shows resilience for different recovery functions that are given in 

(4.1M4.5). 

It is observed from Figures 4.25-4.27 that resilience is the least and most 

sensitive to the actual recovery time for moderate damage for Category 1 and 3 

hurricanes, respectively. This shows that moderate damage is more likely during a 

Category 3 hurricane, whereas less than moderate damage is expected for Category 1 

and 2 hurricanes. These findings are consistent with those of Sections 4.3.2 associated 

with the loss ratio for moderate damage. In addition, resilience is the least and most 

sensitive to the actual recovery time for moderate damage when the recovery is 

exponential and sinusoidal, respectively. Moreover, resilience against Category 1 and 2 

hurricanes stays in the green zone and the green-yellow zone, respectively. It moves 

from the green-yellow to yellow-red zone as recovery becomes slower for a Category 3 

hurricane. 
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(a) Exponential recovery function. (b) Normal recovery function, 
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(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.25: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for moderate damage. 
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(c) Linear recovery function. (d) Sinusoidal recovery function. 

Mean 98.2344 
„ Std. de* 8.95*001 

Max: 99.802 
Min: 95.3848 

a,, Green: *85 24 
Yelow: *14.78 
Red: *0 

(e) Combined recovery function. 

Figure 4.26: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for moderate damage. 
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(b) Normal recovery function. (a) Exponential recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.27: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for moderate damage. 
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4.3.7 Sensitivity of Resilience to Actual Recovery Time for Severe Damage 

Results of the sensitivity of resilience to the actual recovery time for severe damage are 

presented in this section. Random numbers were generated for the actual recovery time 

for severe damage using the probability distribution, ~ 2/flr), while 

assigning fixed values to the other parameters such that D,j= 0.05, D,i2= 0.2, Dj,3=0.45, 

0/4= 0.8, Tj1}=Te
(1), Tj2>=Te

(2>, Ta
(4,=Te

<4> and a=9.2. Resilience was computed using all 

these parameters in (3.3) for Category 1, 2 and 3 hurricanes as well as the recovery 

functions in (4.1)-(4.5). The resulting histograms for resilience against Category 1,2 and 

3 hurricanes are shown in Figures 4.28,4.29 and 4.30, respectively. Each one of Figures 

4.28-4.30 shows resilience for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.28-4.30 that resilience is the least and most 

sensitive to the actual recovery time for severe damage for Category 1 and 3 hurricanes, 

respectively. In fact, resilience against Category 1 is not sensitive to the actual recovery 

time for severe damage at all. This shows that severe damage is more likely during a 

Category 3 hurricane. These findings are consistent with those of Sections 4.3.3 

associated with the loss ratio for severe damage. In addition, excluding a Category 1 

hurricane, resilience is the least and most sensitive to the actual recovery time for 

severe damage when the recovery is exponential and sinusoidal, respectively. 

Moreover, resilience against a Category 1 hurricane stays in the green zone, whereas it 

changes zone as recovery becomes slower for Category 2 and 3 hurricanes. 
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(e) Combined recovery function. 

Figure 4.28: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for severe damage. 
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(e) Combined recovery function. 

Figure 4.29: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for severe damage. 
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(a) Exponential recovery function. 
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(c) Linear recovery function. 

(b) Normal recovery function. 
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(d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.30: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for severe damage. 
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4.3.8 Sensitivity of Resilience to Actual Recovery Time for Destruction 

Results of the sensitivity of resilience to the actual recovery time for destruction are 

presented in this section. Random numbers were generated for the actual recovery time 

for destruction using the probability distribution, T£4) - 9l^Te
(4) ^2jjt ], while 

assigning fixed values to the other parameters such that Ditl= 0.05, D,t2= 0.2, Di3=0.45, 

0,4= 0.8, Tj1>=Te
(1), Ta

<2>=Te
<2>, Ta

<3>=Te
l3> and a=9.2. Resilience was computed using all 

these parameters in (3.3) for Category 1, 2 and 3 hurricanes as well as the recovery 

functions in (4.1)-(4.5). The resulting histograms for resilience against Category 1, 2 and 

3 hurricanes are shown in Figures 4.31,4.32 and 4.33, respectively. Each one of Figures 

4.31-4.33 shows resilience for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.31-4.33 that resilience is the least and most 

sensitive to the actual recovery time for destruction for Category 1 and 3 hurricanes, 

respectively. In fact, resilience against categories 1 and 2 is not sensitive and negligibly 

sensitive to the actual recovery time for destruction, respectively. This shows that 

destruction is more likely during a Category 3 hurricane. These findings are consistent 

with those of Sections 4.3.4 associated with the loss ratio for destruction. In addition, 

excluding a Category 1 hurricane, resilience is the least and most sensitive to the actual 

recovery time for destruction when the recovery is exponential and sinusoidal, 

respectively. Moreover, resilience against a Category 1 hurricane stays in the green 

zone, whereas it changes zones as recovery becomes slower for Category 2 and 3 

hurricanes. 
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(c) Linear recovery function. 
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(e) Combined recovery function. 

Figure 4.31: Histograms of resilience against a Category 1 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for destruction. 
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(e) Combined recovery function. 

Figure 4.32: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for destruction. 
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(e) Combined recovery function. 

Figure 4.33: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the actual recovery time for destruction. 
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4.3.9 Sensitivity of Resilience to Average Wind Speed 

Results of the sensitivity of resilience to the average wind speed are presented in this 

section. Random numbers were generated for the average wind speed using the 

probability distribution, a ~ U(7.9,10.5), while assigning fixed values to the other 

parameters such that Dhi= 0.05, Dt2= 0.2, Di3= 0.45, Dij4= 0.8, Ta
(1>=Te

w, T0
(2)=Tj2), 

Ta(3,=Tj3) and Ta
(4)=Te

<4>. Resilience was computed using all these parameters in (3.3) for 

Category 1,2 and 3 hurricanes as well as the recovery functions in (4.1)-(4.5). The 

resulting histograms for resilience against Category 1, 2 and 3 hurricanes are shown in 

Figures 4.34,4.35 and 4.36, respectively. Each one of Figures 4.34-4.36 shows resilience 

for different recovery functions that are given in (4.1)-(4.5). 

It is observed from Figures 4.34-4.36 that resilience is the least and most 

sensitive to the average wind speed for Category 1 and 3 hurricanes, respectively. In 

addition, resilience is the least and most sensitive to the average wind speed when the 

recovery is exponential and sinusoidal, respectively. Moreover, resilience against a 

Category 1 hurricane stays in the green zone regardless of the type of recovery. On the 

other hand, resilience moves from the green to yellow zone and from the yellow to red 

zone as recovery becomes slower for Category 2 and 3 hurricanes, respectively. 
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(a) Exponential recovery function. (b) Normal recovery function. 

(c) Linear recovery function. (d) Sinusoidal recovery function. 
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(e) Combined recovery function. 

Figure 4.34: Histograms of resilience against a Category 1 Hurricane for different recovery functions 
showing the sensitivity of resilience to the average wind speed. 
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(e) Combined recovery function. 

Figure 4.35: Histograms of resilience against a Category 2 hurricane for different recovery functions 
showing the sensitivity of resilience to the average wind speed. 



www.manaraa.com

115 

1T"T $r M m 90 ®1 15 93 

(a) Exponential recovery function. (b) Normal recovery function. 
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(c) Linear recovery function. (d) Sinusoidal recovery function. 

(e) Combined recovery function. 

Figure 4.36: Histograms of resilience against a Category 3 hurricane for different recovery functions 
showing the sensitivity of resilience to the average wind speed. 
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4.4 Determination of Number of Replicas 

A Monte Carlo analysis was performed in Section 4.2. It was followed by sensitivity 

analysis in Section 4.3. In both analyses, a replica of 10,000 randomly generated 

numbers was used. However, one replica may not be enough to achieve sufficient 

accuracy. Hence, the number of replicas needed for sufficient accuracy is investigated 

for a Monte Carlo analysis in this section. For this purpose, it is necessary to define 

MR>(Nr) = -^-'t,Ms(n) (4.9) 
M r n=l 

where JUR(n) is the mean of the resilience pertaining to replica n and /^c)(Wr) is 

the cumulative mean of the resilience of Nr replicas. It is also needed to define 

= -1)| (4.10) 

where ( N r )  is the absolute cumulative mean error, which is the difference 

between the cumulative means of Nr and Nr — 1 replicas. The absolute error in (4.10) 

was computed for Category 1, 2 and 3 hurricanes as well as the recovery functions in 

(4.1)-(4.5). The resulting plots pertaining to ) for Category 1, 2 and 3 hurricanes 

as well as 0.001% of are shown in Figures 4.37,4.38 and 4.39, respectively. 
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Figure 4.37: Absolute cumulative mean error and 0.001% of cumulative mean for showing how 
cumulative mean converges for a Category 1 hurricane. 
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Figure 4.38: Absolute cumulative mean error and 0.00196 of cumulative mean for showing how 
cumulative mean converges for a Category 2 hurricane. 
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Figure 4.39: Absolute cumulative mean error and 0.00196 of cumulative mean for showing how 
cumulative mean converges for a Category 3 hurricane. 
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Figures 4.37-4.39 show that 30 replicas are sufficient to reduce the absolute cumulative 

mean error below 0.001%. Therefore, 30 replicas were generated for Monte Carlo 

analysis as well as sensitivity analysis associated with the resilience of various types of 

residential buildings in the following sections. 

4.5 Monte Carlo Analysis for Multiple Replicas 

In this section, Monte Carlo analysis associated with the resilience of the building types 

shown in Table 4.1 is presented. Resilience data for the 30 replicas of Monte Carlo 

analysis corresponding to these building types are compared and shown in Sections 

4.5.1-4.5.5. The aim of these resilience comparisons is to demonstrate resilient 

components of the buildings. It is believed that these types of comparisons can be very 

practical for decision makers in the evaluation of mitigation actions for different building 

types. 

4.5.1 Gable versus Hip Roofs 

During a wind event, roof shape plays an important role in determining the degree of 

potential damage to a building. Roof shape can be flat, hip or gable, but resilience of 

only hip and gable roofs is compared in this section since these two roof shapes are very 

common in residential structures. Figure 4.40 shows hip and gable roof shapes. 

Specifically, resilience was compared between two Unreinforced Masonry 

Residential (URM) buildings with the same characteristics except that one has a gable 

roof (building type A) and the other has a hip roof (building type B). A National 

Association of Home Builders Research Center (NAHB) document gives a detailed post 
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disaster analysis after Hurricane Andrew (NAHB, 1993). This report, and loss estimation 

methodologies used in HAZUS*mh and FPHLP show that hip roofs are more resistant to 

wind damage compared to gable roofs. Possible reasons behind better performance of 

hip roofs compared to gable roofs can be summarized as follows (NAHB, 1993): 

• The hip roof framing geometry inherently supports the roof and end walls 

against lateral loads. 

• Gable roofs are less efficient aerodynamically which leads to more loads to the 

structure and its components. 

• It is necessary to have higher standard of workmanship when framing hip roofs. 
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Figure 4.40: A one story residential building with (a) gable roof, (b) hip roof (HAZUS'MH MR4 
Hurricane Model Technical Manual, 2009). 

Comparison of the resilience data in Table 4.2 also shows that hip roofs are more 

resistant to wind damage. Hence, resilience data in Table 4.2 are in agreement with the 

findings of the above mentioned NAHB document and methodologies. Mean resilience 

values are higher for Category 1 and 2 hurricanes for hip roofs compared to gable roofs, 

but the difference between the mean values of resilience for hip and gable roofs is more 
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significant for Category 3 hurricanes. From the recovery perspective, it is possible to 

notice the difference between the resilience of hip and gable roofs for all recovery 

types. However, since exponential recovery is faster than other recovery types, the 

difference tends to be smaller for this type of recovery. 

Table 4.2: Comparison of mean values, standard deviations and percentages to be in different zones 
for resilience of building type A and type B based on Monte Carlo analysis. 

Hurricane 
Category 

Recovery 
function 

Mean Values Std. dev. Green (96) Yellow (%) Red(%) 
Hurricane 
Category 

Recovery 
function 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

Type 
A 

Type 
B 

1 

Exponential 99.866 99.922 0.08 0.05 100.00 100.00 0.00 0.00 0.00 0.00 

1 
Normal 99.741 99.849 0.16 0.09 100.00 100.00 0.00 0.00 0.00 0.00 

1 Linear 99.703 99.828 0.17 0.10 100.00 100.00 0.00 0.00 0.00 0.00 1 
Sinusoidal 99.627 99.784 0.21 0.12 100.00 100.00 0.00 0.00 0.00 0.00 

1 

Combined 99.837 99.908 0.09 0.05 100.00 100.00 0.00 0.00 0.00 0.00 

2 

Exponential 98.899 99.308 0.58 0.36 97.86 99.99 2.14 0.01 0.00 0.00 

2 
Normal 97.867 98.661 1.07 0.68 69.39 93.69 30.61 6.31 0.00 0.00 

2 Linear 97.546 98.443 1.08 0.72 56.41 88.71 43.59 11.29 0.00 0.00 2 
Sinusoidal 96.921 98.043 1.32 0.89 38.14 74.09 61.86 25.91 0.00 0.00 

2 

Combined 98.229 99.000 0.84 0.46 82.29 99.54 17.71 0.46 0.00 0.00 

3 

Exponential 96.212 97.577 1.34 0.92 17.17 58.61 82.83 41.39 0.01 0.00 

3 
Normal 92.682 95.317 2.47 1.71 0.74 8.15 86.02 91.34 13.24 0.52 

3 Linear 91.396 94.500 2.54 1.77 0.22 3.31 71.61 96.08 28.17 0.61 3 
Sinusoidal 89.166 93.076 3.12 2.19 0.05 1.01 41.81 90.60 58.14 8.39 

3 

Combined 91.960 95.347 2.44 1.53 0.34 6.87 79.73 93.04 19.93 0.09 

4.5.2 Strap versus Toe-nail (Roof to wall connection) 

Resilience was compared between two URM buildings with the same characteristics 

except that one has a strap (building type A) and the other has a toe-nail (building type 

C) roof/wall connection. According to damage simulations of HAZUS*mh, the effect of 

different types of connections really depends on roof types as well as nail types (6d vs. 

8d). The use of toe-nail connection instead of strap connection increases damage 

between 3% and 29% according the results of HAZUS*mh damage simulations. A 
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comparison of the resilience data in Table 

slightly more robust compared to toe-nail 

123 

4.3 also shows that strap connections are 

connections. 

Table 4.3: Comparison of mean values, standard deviations and percentages to be in different zones 

Hurricane 
Category 

Recovery 
function 

Mean Values Std. dev. Green (96) Yellow (%) Red (%) 
Hurricane 
Category 

Recovery 
function 

Type 
A 

Type 
C 

Type 
A 

Type 
C 

Type 
A 

Type 
C 

Type 
A 

Type 
C 

Type 
A 

Type 
C 

1 

Exponential 99.866 99.860 0.08 0.08 100.00 100.00 0.00 0.00 0.00 0.00 

1 
Normal 99.741 99.728 0.16 0.16 100.00 100.00 0.00 0.00 0.00 0.00 

1 Linear 99.703 99.687 0.17 0.17 100.00 100.00 0.00 0.00 0.00 0.00 1 
Sinusoidal 99.627 99.607 0.21 0.21 100.00 100.00 0.00 0.00 0.00 0.00 

1 

Combined 99.837 99.825 0.09 0.09 100.00 100.00 0.00 0.00 0.00 0.00 

2 

Exponential 98.899 98.686 0.58 0.53 97.86 97.59 2.14 2.41 0.00 0.00 

2 
Normal 97.867 97.461 1.07 0.98 69.39 54.62 30.61 45.38 0.00 0.00 

2 Linear 97.546 97.026 1.08 1.03 56.41 36.38 43.59 63.62 0.00 0.00 2 
Sinusoidal 96.921 96.257 1.32 1.27 38.14 17.87 61.86 82.13 0.00 0.00 

2 

Combined 98.229 97.605 0.84 0.81 82.29 59.57 17.71 40.43 0.00 0.00 

3 

Exponential 96.212 95.198 1.34 1.88 17.17 9.93 82.83 89.23 0.01 0.84 

3 
Normal 92.682 90.713 2.47 3.46 0.74 0.45 86.02 62.73 13.24 36.82 

3 Linear 91.396 89.164 2.54 3.43 0.22 0.11 71.61 42.66 28.17 57.23 3 
Sinusoidal 89.166 86.372 3.12 4.19 0.05 0.03 41.81 22.22 58.14 77.75 

3 

Combined 91.960 88.682 2.44 3.65 0.34 0.11 79.73 38.69 19.93 61.19 

4.5.3 One-story versus Two-story 

Resilience was compared between two URM buildings with the same characteristics 

except that one is one-story (building type A) and the other is two-story (building type 

E). Two-story houses are historically more vulnerable to winds compared to one-story 

houses. The reason behind this is that a two-story building is more vulnerable to 

window and water damage compared to a one-story building due to its increased height 

(NAHB, 1993). Damage simulation results done by HAZUS*mh, also show that when the 

number of stories is increased from one to two, average damage also increases from 

35% to 75% (HAZUS*mh Hurricane Technical Manual, 2009). A comparison of the 
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resilience data in Table 4.4 also shows that two-story houses are less resilient to winds. 

Increased vulnerability of two-story houses compared to that of one-story houses can 

be easily noticed for Category 3 hurricanes for all recovery types. 

Table 4.4: Comparison of mean values, standard deviations and percentages to be in different zones 

Hurricane 
Category 

Recovery 
function 

Mean Values Std. dev. Green (X) Yellow (%) Red (96) 
Hurricane 
Category 

Recovery 
function 

Type 
A 

Type 
E 

Type 
A 

Type 
E 

Type 
A 

Type 
E 

Type 
A 

Type 
E 

Type 
A 

Type 
E 

1 

Exponential 99.866 99.663 0.08 0.19 100.00 100.00 0.00 0.00 0.00 0.00 

1 
Normal 99.741 99.346 0.16 0.36 100.00 99.98 0.00 0.02 0.00 0.00 

1 Linear 99.703 99.251 0.17 0.37 100.00 100.00 0.00 0.00 0.00 0.00 1 
Sinusoidal 99.627 99.061 0.21 0.46 100.00 99.99 0.00 0.01 0.00 0.00 

1 

Combined 99.837 99.527 0.09 0.25 100.00 100.00 0.00 0.00 0.00 0.00 

2 

Exponential 98.899 97.398 0.58 0.97 97.86 50.83 2.14 49.17 0.00 0.00 

2 
Normal 97.867 94.973 1.07 1.80 69.39 5.66 30.61 93.41 0.00 0.93 

2 Linear 97.546 94.098 1.08 1.85 56.41 2.18 43.59 96.40 0.00 1.43 2 
Sinusoidal 96.921 92.569 1.32 2.28 38.14 0.63 61.86 86.23 0.00 13.14 

2 

Combined 98.229 94.809 0.84 1.68 82.29 4.00 17.71 95.55 0.00 0.45 

3 

Exponential 96.212 91.697 1.34 3.25 17.17 1.66 82.83 71.27 0.01 27.07 

3 
Normal 92.682 83.939 2.47 5.98 0.74 0.07 86.02 15.58 13.24 84.35 

3 Linear 91.396 81.285 2.54 5.88 0.22 0.01 71.61 7.55 28.17 92.44 3 
Sinusoidal 89.166 76.470 3.12 7.19 0.05 0.00 41.81 2.80 58.14 97.20 

3 

Combined 91.960 79.286 2.44 6.55 0.34 0.01 79.73 5.14 19.93 94.85 

4.5.4 UMR versus WFR 

Resilience was compared between a Wood Frame Residential (WFR) building (building 

type D) and a URM building (building type E), which otherwise have the same 

characteristics. WFR and URM buildings have historically similar damage results. 

Masonry walls can get less damage than wood frame walls. In addition, the integrity of 

the roof system was not much depending on masonry walls (NAHB, 1993). However, 

according to damage surveys, UMR walls can have fragility in the structural system that 

can lead increasing internal pressure and eventually failure of masonry walls and 
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collapsing of the entire structure (Pinelli and O'Neill, 2003). HAZUS*mh damage 

simulation results are claiming that there is no significance in damage between UMR 

and WFR walls (HAZUS*mh Hurricane Technical Manual, 2009). 

A comparison of the resilience data in Table 4.5 also shows that WFR buildings 

are slightly more resilient against Category 1 and 2 hurricanes whereas they are slightly 

more vulnerable against Category 3 hurricanes. The differences between the resilience 

of WFR and URM buildings are negligible. 

Table 4.5: Comparison of mean values, standard deviations and percentages to be in different zones 

Hurricane 
Category 

Recovery 
function 

Mean Values Std. dev. Green (%) Yellow (96) Red (X) 
Hurricane 
Category 

Recovery 
function 

Type 
0 

Type 
E 

Type 
D 

Type 
E 

Type 
D 

Type 
E 

Type 
O 

Type 
E 

Type 
D 

Type 
E 

1 

Exponential 99.674 99.663 0.19 0.19 100.00 100.00 0.00 0.00 0.00 0.00 

1 
Normal 99.369 99.346 0.35 0.36 99.99 99.98 0.01 0.02 0.00 0.00 

1 Linear 99.277 99.251 0.36 0.37 100.00 100.00 0.00 0.00 0.00 0.00 1 
Sinusoidal 99.094 99.061 0.45 0.46 100.00 99.99 0.00 0.01 0.00 0.00 

1 

Combined 99.547 99.527 0.24 0.25 100.00 100.00 0.00 0.00 0.00 0.00 

2 

Exponential 97.440 97.398 0.96 0.97 52.68 50.83 47.32 49.17 0.00 0.00 

2 
Normal 95.053 94.973 1.77 1.80 6.07 5.66 93.12 93.41 0.81 0.93 

2 Linear 94.192 94.098 1.83 1.85 2.34 2.18 96.49 96.40 1.17 1.43 2 
Sinusoidal 92.688 92.569 2.25 2.28 0.68 0.63 87.50 86.23 11.81 13.14 

2 

Combined 94.907 94.809 1.65 1.68 4.41 4.00 95.23 95.55 0.36 0.45 

3 

Exponential 91.659 91.697 3.28 3.25 1.66 1.66 70.73 71.27 27.61 27.07 

3 
Normal 83.865 83.939 6.03 5.98 0.06 0.07 15.49 15.58 84.45 84.35 

3 Linear 81.207 81.285 5.93 5.88 0.01 0.01 7.50 7.55 92.49 92.44 3 
Sinusoidal 76.374 76.470 7.25 7.19 0.00 0.00 2.80 2.80 97.20 97.20 

3 

Combined 79.156 79.286 6.62 6.55 0.01 0.01 5.08 5.14 94.92 94.85 

4.5.5 6d versus 8d 

Resilience was compared between two URM buildings with the same characteristics 

except that one has 6d (building type A) and the other has 8d (building type F) 

sheathing. It should be noted that 6d and 8d sheathing have 6 and 8 nails per shingle of 
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the roof. Obviously, buildings with 8d sheathing are expected to be more resilient 

compared to those with 6d sheathing. A comparison of the resilience data in Table 4.6 

also shows that buildings with 8d sheathing are more resilient to winds. Robustness of 

8d sheathing against a hurricane becomes more noticeable as the category of the 

hurricane increases. 

Table 4.6: Comparison of mean values, standard deviations and percentages to be in different zones 

Hurricane 
Category 

Recovery 
function 

Mean Values Std. dev. Green (%) Yellow (%) Red (%) 
Hurricane 
Category 

Recovery 
function 

Type 
A 

Type 
F 

Type 
A 

Type 
F 

Type 
A 

Type 
F 

Type 
A 

Type 
F 

Type 
A 

Type 
F 

1 

Exponential 99.866 99.877 0.08 0.08 100.00 100.00 0.00 0.00 0.00 0.00 

1 
Normal 99.741 99.762 0.16 0.15 100.00 100.00 0.00 0.00 0.00 0.00 

1 Linear 99.703 99.728 0.17 0.16 100.00 100.00 0.00 0.00 0.00 0.00 1 
Sinusoidal 99.627 99.659 0.21 0.20 100.00 100.00 0.00 0.00 0.00 0.00 

1 

Combined 99.837 99.859 0.09 0.09 100.00 100.00 0.00 0.00 0.00 0.00 

2 

Exponential 98.899 99.073 0.58 0.49 97.86 99.38 2.14 0.62 0.00 0.00 

2 
Normal 97.867 98.206 1.07 0.92 69.39 80.37 30.61 19.63 0.00 0.00 

2 Linear 97.546 97.923 1.08 0.95 56.41 69.97 43.59 30.03 0.00 0.00 2 
Sinusoidal 96.921 97.392 1.32 1.18 38.14 52.14 61.86 47.86 0.00 0.00 

2 

Combined 98.229 98.626 0.84 0.65 82.29 94.34 17.71 5.66 0.00 0.00 

3 

Exponential 96.212 97.080 1.34 1.08 17.17 39.14 82.83 60.86 0.01 0.00 

3 
Normal 92.682 94.359 2.47 1.99 0.74 3.14 86.02 94.33 13.24 2.53 

3 Linear 91.396 93.365 2.54 2.06 0.22 1.08 71.61 93.42 28.17 5.50 3 
Sinusoidal 89.166 91.644 3.12 2.55 0.05 0.28 41.81 74.38 58.14 25.34 

3 

Combined 91.960 94.182 2.44 1.85 0.34 2.13 79.73 96.14 19.93 1.73 

4.6 Sensitivity Analysis for Multiple Replicas 

In this section, sensitivity analysis associated with the resilience of the building types 

shown in Table 4.1 is presented. Resilience data for the 30 replicas of sensitivity analysis 

pertaining to these building types are given for each variable in the following sections. 

4.6.1 Replicas for Sensitivity to Loss Ratio for Minor Damage 
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Resilience data for the 30 replicas of sensitivity analysis against the loss ratio for minor 

damage corresponding to the building types in Table 4.1 are shown in Tables 4.7-4.12. It 

is observed in Tables 4.7-4.12 that resilience of the building types A, C, D, and E against 

Category 2 hurricanes is more sensitive to the loss ratio for minor damage compared to 

the resilience against the other hurricane categories. On the other hand, resilience of 

the building types B and F against Category 3 hurricanes is more sensitive to the loss 

ratio for minor damage. Since the building types B and F are more resilient compared to 

the other building types, they are more likely to have minor damage if a hurricane with 

Category 3 happens whereas the others may have minor damage even after a hurricane 

with a lower category occurs. 

Table 4.7: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type A against the loss ratio for minor damage based on sensitivity analysis. 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. i%) (%) 1%) 

Exponential 99.8645 0.0603 100 0 0 
Normal 99.7397 0.1157 100 0 0 

1 Linear 99.6817 0.1415 100 0 0 
Sinusoidal 99.5961 0.1796 100 0 0 

Combined 99.8358 0.0603 100 0 0 

Exponential 98.8884 0.2431 100 0 0 

Normal 97.8646 0.4671 74.1027 25.8973 0 

2 Linear 97.3888 0.5712 45.6937 54.3063 0 

Sinusoidal 96.6872 0.7246 18.598 81.402 0 

Combined 98.211 0.2431 100 0 0 

Exponential 96.1852 0.2274 0 100 0 
Normal 92.6718 0.4369 0 100 0 

3 Linear 91.0388 0.5343 0 100 0 
Sinusoidal 88.6313 0.6778 0 0 100 

Combined 91.7426 0.2274 0 100 0 
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Table 4.8: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (X) {*) (*) 

Exponential 99.921 0.0367 100 0 0 

Normal 99.8483 0.0704 100 0 0 

1 Linear 99.8145 0.0861 100 0 0 

Sinusoidal 99.7646 0.1093 100 0 0 

Combined 99.9068 0.0367 100 0 0 

Exponential 99.3016 0.223 100 0 0 

Normal 98.6584 0.4283 100 0 0 

2 Linear 98.3594 0.5237 98.75 1.25 0 

Sinusoidal 97.9187 0.6644 69.2737 30.7263 0 

Combined 98.9888 0.223 100 0 0 

Exponential 97.5593 0.3017 58.042 41.958 0 

Normal 95.3114 0.5795 0 100 0 

3 Linear 94.2666 0.7086 0 100 0 

Sinusoidal 92.7264 0.899 0 100 0 

Combined 95.2458 0.3017 0 100 0 

Table 4.9: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) [%) (%) 

Exponential 99.8579 0.0618 100 0 0 

Normal 99.7271 0.1187 100 0 0 

1 Linear 99.6663 0.1451 100 0 0 

Sinusoidal 99.5767 0.1841 100 0 0 

Combined 99.8229 0.0618 100 0 0 
Exponential 98.6767 0.2456 100 0 0 

Normal 97.4579 0.4718 48.9777 51.0223 0 

2 Linear 96.8914 0.577 20.744 79.256 0 

Sinusoidal 96.0563 0.732 0 100 0 
Combined 97.553 0.2456 59.2207 40.7793 0 

Exponential 95.1572 0.224 0 100 0 

Normal 90.6969 0.4303 0 100 0 

3 Linear 88.6238 0.5261 0 0 100 

Sinusoidal 85.5676 0.6675 0 0 100 

Combined 88.1824 0.224 0 0 100 
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Table 4.10: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.67 0.1121 100 0 0 
Normal 99.366 0.2153 100 0 0 

1 Linear 99.2248 0.2633 100 0 0 

Sinusoidal 99.0165 0.3341 100 0 0 

Combined 99.5421 0.1121 100 0 0 

Exponential 97.4205 0.2456 43.6277 56.3723 0 

Normal 95.0447 0.4717 0 100 0 
2 Linear 93.9405 0.5768 0 100 0 

Sinusoidal 92.3126 0.7318 0 100 0 
Combined 94.7925 0.2456 0 100 0 
Exponential 91.5895 0.107 0 100 0 

Normal 83.8433 0.2056 0 0 100 

3 Linear 80.2429 0.2514 0 0 100 
Sinusoidal 74.9353 0.319 0 0 100 
Combined 78.0545 0.107 0 0 100 

Table 4.11: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.6587 0.1134 100 0 0 
Normal 99.3444 0.2179 100 0 0 

1 Linear 99.1983 0.2665 100 0 0 
Sinusoidal 98.9829 0.3381 100 0 0 
Combined 99.5229 0.1134 100 0 0 
Exponential 97.3797 0.2472 38.807 61.193 0 
Normal 94.9663 0.4749 0 100 0 

2 Linear 93.8446 0.5807 0 100 0 
Sinusoidal 92.191 0.7367 0 100 0 
Combined 94.6918 0.2472 0 100 0 
Exponential 91.6233 0.11 0 100 0 
Normal 83.9081 0.2114 0 0 100 

3 Linear 80.3222 0.2585 0 0 100 
Sinusoidal 75.0359 0.3279 0 0 100 

Combined 78.1925 0.11 0 0 100 
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Table 4.12: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (%) (%) 

Exponential 99.8753 0.0605 100 0 0 

Normal 99.7604 0.1161 100 0 0 

1 Linear 99.707 0.142 100 0 0 
Sinusoidal 99.6283 0.1802 100 0 0 
Combined 99.8569 0.0605 100 0 0 

Exponential 99.0637 0.2752 100 0 0 

Normal 98.2013 0.5287 89.6413 10.3587 0 

2 Linear 97.8004 0.6466 64.5567 35.4433 0 

Sinusoidal 97.2095 0.8203 40.6753 59.3247 0 

Combined 98.6105 0.2752 100 0 0 
Exponential 97.058 0.3022 10.1543 89.8457 0 
Normal 94.3483 0.5805 0 100 0 

3 Linear 93.0888 0.7098 0 100 0 

Sinusoidal 91.2322 0.9005 0 92.679 7.321 
Combined 94.0472 0.3022 0 100 0 

4.6.2 Replicas for Sensitivity to Loss Ratio for Moderate Damage 

Resilience data for the 30 replicas of sensitivity analysis against the loss ratio for 

moderate damage corresponding to the building types in Table 4.1 are shown in Tables 

4.13-4.18. It is observed in Tables 4.13-4.18 that resilience of all the building types 

against Category 3 hurricanes is more sensitive to the loss ratio for moderate damage 

compared to the resilience against the other hurricane categories. Sensitivity of 

resilience to the loss ratio for moderate damage significantly decreases as the category 

of the hurricanes decreases. Moreover, the building types A and B are respectively the 

most and the feast sensitive to the loss ratio for moderate damage. 
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Table 4.13: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type A against the loss ratio for moderate damage based on sensitivity analysis. 
Hurricane 
Category 

Recovery 
function 

Mean 
value 

Std. 
dev. 

Green 
(*) 

Yellow 
(%) 

Red 
(%) 

1 

Exponential 99.8645 0.009 100 0 0 

1 

Normal 99.7397 0.0172 100 0 0 

1 Linear 99.6817 0.0211 100 0 0 1 
Sinusoidal 99.5962 0.0267 100 0 0 

1 

Combined 99.8358 0.0172 100 0 0 

2 

Exponential 98.8883 0.1718 100 0 0 

2 

Normal 97.8644 0.33 84.0907 15.9093 0 

2 Linear 97.3885 0.4035 43.7713 56.2287 0 2 
Sinusoidal 96.6869 0.5119 5.6263 94.3737 0 

2 

Combined 98.2107 0.33 100 0 0 

3 

Exponential 96.1849 0.4415 0 100 0 

3 

Normal 92.671 0.8481 0 100 0 

3 Linear 91.0378 1.0371 0 81.6957 18.3043 3 
Sinusoidal 88.6302 1.3158 0 22.065 77.935 

3 

Combined 91.7418 0.8481 0 100 0 

Table 4.14: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (*) 

Exponential 99.921 0.0045 100 0 0 
Normal 99.8483 0.0086 100 0 0 

1 Linear 99.8145 0.0105 100 0 0 
Sinusoidal 99.7646 0.0133 100 0 0 
Combined 99.9068 0.0086 100 0 0 
Exponential 99.3016 0.0729 100 0 0 
Normal 98.6583 0.1401 100 0 0 

2 Linear 98.3593 0.1713 100 0 0 

Sinusoidal 97.9186 0.2173 100 0 0 
Combined 98.9887 0.1401 100 0 0 
Exponential 97.5591 0.2968 58.115 41.885 0 

Normal 95.311 0.5702 0 100 0 

3 Linear 94.2661 0.6973 0 100 0 
Sinusoidal 92.7257 0.8846 0 100 0 
Combined 95.2453 0.5702 0 100 0 
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Table 4.15: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type C against the loss ratio for moderate damage based on sensitivity analysis. 
Hurricane 
Category 

Recovery 
function 

Mean 
value 

Std. 
dev. 

Green 
(%) 

Yellow 
(*) 

Red 
(%) 

1 

Exponential 99.858 0.0081 100 0 0 

1 

Normal 99.7272 0.0156 100 0 0 

1 Linear 99.6664 0.019 100 0 0 1 
Sinusoidal 99.5768 0.0242 100 0 0 

1 

Combined 99.8229 0.0156 100 0 0 

2 

Exponential 98.6769 0.1562 100 0 0 

2 

Normal 97.4584 0.3001 48.512 51.488 0 

2 Linear 96.892 0.367 4.0927 95.9073 0 2 
Sinusoidal 96.057 0.4656 0 100 0 

2 

Combined 97.5533 0.3001 57.5217 42.4783 0 

3 

Exponential 95.1575 0.3912 0 100 0 

3 

Normal 90.6975 0.7514 0 80.5957 19.4043 

3 Linear 88.6246 0.9189 0 9.947 90.053 3 
Sinusoidal 85.5686 1.1657 0 0 100 

3 

Combined 88.1829 0.7514 0 0 100 

Table 4.16: Mean value, standard deviation and percentages to be in 
building type P against the loss ratio for moderate damage 
Hurricane 
Category 

Recovery 
function 

Exponential 

Normal 

Linear 

Sinusoidal 

Combined 
Exponential 

Normal 

Linear 

Sinusoidal 
Combined 

Exponential 

Normal 
Linear 

Sinusoidal 

Combined 

Mean 
value 

99.6699 
99.366 

99.2247 

99.0164 

99.5422 

97.4211 
95.046 

93.942 

92.3145 
94.794 

91.5904 

83.8449 

80.2449 

74.9378 

78.0562 

Std. 
dev. 

0.0377 
0.0724 

0.0886 
0.1123 

0.0724 

0.3314 
0.6367 

0.7785 

0.9877 
0.6367 

0.3428 

0.6585 

0.8053 

1.0216 
0.6585 

Green 
(%) 

100 
100 
100 
100 
100 

45.3693 

different zones for resilience of 
based on sensitivity analysis. 

Yellow 
(%) 

54.6307 
100 
100 
100 
100 
100 

Red 
(%) 

100 
100 
100 
100 
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Table 4.17: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane 
Category 

Recovery 
function 

Mean 
value 

Std. 
dev. 

Green 
(X) 

Yellow 
(*) 

Red 
(%) 

1 

Exponential 99.6588 0.04 100 0 0 

1 

Normal 99.3445 0.0768 100 0 0 

1 Linear 99.1985 0.0939 100 0 0 1 
Sinusoidal 98.9832 0.1192 100 0 0 

1 

Combined 99.523 0.0768 100 0 0 

2 

Exponential 97.3799 0.3335 41.7463 58.2537 0 

2 

Normal 94.9667 0.6406 0 100 0 

2 Linear 93.8451 0.7834 0 100 0 2 
Sinusoidal 92.1916 0.9938 0 100 0 

2 

Combined 94.6919 0.6406 0 100 0 

3 

Exponential 91.6234 0.3536 0 100 0 

3 

Normal 83.9083 0.6793 0 0 100 

3 Linear 80.3224 0.8306 0 0 100 3 
Sinusoidal 75.0361 1.0538 0 0 100 

3 

Combined 78.1926 0.6793 0 0 100 

Table 4.18: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type F against the oss ratio for moderate damage I 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.8753 0.0058 100 0 0 
Normal 99.7605 0.0111 100 0 0 

1 Linear 99.7071 0.0135 100 0 0 
Sinusoidal 99.6284 0.0171 100 0 0 
Combined 99.8569 0.0111 100 0 0 
Exponential 99.0636 0.1122 100 0 0 
Normal 98.2012 0.2155 100 0 0 

2 Linear 97.8004 0.2635 85.6157 14.3843 0 
Sinusoidal 97.2094 0.3343 27.0693 72.9307 0 
Combined 98.6103 0.2155 100 0 0 
Exponential 97.0577 0.3657 17.0213 82.9787 0 
Normal 94.3477 0.7025 0 100 0 

3 Linear 93.0882 0.8591 0 100 0 
Sinusoidal 91.2314 1.0898 0 85.2553 14.7447 
Combined 94.0466 0.7025 0 100 0 

4.6.3 Replicas for Sensitivity to Loss Ratio for Severe Damage 

Resilience data for the 30 replicas of sensitivity analysis against the loss ratio for severe 

damage corresponding to the building types in Table 4.1 are shown in Tables 4.19-4.24. 
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It is observed in Tables 4.19-4.24 that resilience of all the building types against 

Category 3 hurricanes is more sensitive to the loss ratio for severe damage compared to 

the resilience against the other hurricane categories. In addition, resilience of the 

building types A, B and F against Category 1 hurricanes is not sensitive at ail to the loss 

ratio for severe damage. Therefore, these buildings are not expected to have severe 

damage when a hurricane with Category 1 happens. The building types D and B are 

respectively the most and the least sensitive to the loss ratio for severe damage. 

Table 4.19: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) [%)  

Exponential 99.8645 0 100 0 0 

Normal 99.7397 0 100 0 0 
1 Linear 99.6817 0 100 0 0 

Sinusoidal 99.5962 0 100 0 0 
Combined 99.8359 0 100 0 0 

Exponential 98.8884 0.0178 100 0 0 
Normal 97.8646 0.0342 100 0 0 

2 Linear 97.3888 0.0419 0 100 0 

Sinusoidal 96.6873 0.0531 0 100 0 
Combined 98.211 0.0419 100 0 0 

Exponential 96.1848 0.2163 0 100 0 
Normal 92.6708 0.4155 0 100 0 

3 Linear 91.0376 0.5081 0 100 0 

Sinusoidal 88.6299 0.6445 0 0 100 

Combined 91.7414 0.5081 0 100 0 
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Table 4.20: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (X) (%) 

Exponential 99.921 0 100 0 0 
Normal 99.8483 0 100 0 0 

1 Linear 99.8145 0 100 0 0 
Sinusoidal 99.7646 0 100 0 0 
Combined 99.9068 0 100 0 0 
Exponential 99.3017 0.0114 100 0 0 
Normal 98.6585 0.022 100 0 0 

2 Linear 98.3595 0.0269 100 0 0 
Sinusoidal 97.9188 0.0341 100 0 0 
Combined 98.9889 0.0269 100 0 0 
Exponential 97.5595 0.1205 70.2523 29.7477 0 
Normal 95.3117 0.2315 0 100 0 

3 Linear 94.2669 0.2831 0 100 0 
Sinusoidal 92.7267 0.3592 0 100 0 
Combined 95.246 0.2831 0 100 0 

Table 4.21: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (94) (%) {%) 

Exponential 99.858 0.0013 100 0 0 
Normal 99.7272 0.0025 100 0 0 

1 Linear 99.6664 0.0031 100 0 0 
Sinusoidal 99.5768 0.0039 100 0 0 
Combined 99.8229 0.0031 100 0 0 
Exponential 98.6768 0.0245 100 0 0 
Normal 97.4582 0.0471 39.7417 60.2583 0 

2 Linear 96.8918 0.0576 0 100 0 
Sinusoidal 96.0567 0.0731 0 100 0 
Combined 97.5531 0.0576 89.1067 10.8933 0 
Exponential 95.1573 0.1256 0 100 0 
Normal 90.6971 0.2412 0 100 0 

3 Linear 88.624 0.295 0 0 100 
Sinusoidal 85.5679 0.3742 0 0 100 
Combined 88.1825 0.295 0 0 100 
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Table 4.22: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (X) (X) 

Exponential 99.6698 0.0011 100 0 0 
Normal 99.3657 0.0021 100 0 0 

1 Linear 99.2244 0.0026 100 0 0 

Sinusoidal 99.0161 0.0033 100 0 0 

Combined 99.542 0.0026 100 0 0 
Exponential 97.4201 0.1293 37.7633 62.2367 0 
Normal 95.0439 0.2483 0 100 0 

2 Linear 93.9395 0.3037 0 100 0 
Sinusoidal 92.3114 0.3853 0 100 0 

Combined 94.7919 0.3037 0 100 0 
Exponential 91.589 0.4562 0 100 0 
Normal 83.8423 0.8763 0 0 100 

3 Linear 80.2418 1.0716 0 0 100 
Sinusoidal 74.9338 1.3595 0 0 100 
Combined 78.0535 1.0716 0 0 100 

Table 4.23: Mean value, standard deviation and 
building type E against the loss ratio 

Hurricane 
Category 

Recovery 
function 

Exponential 
Normal 

Linear 
Sinusoidal 

Combined 

Exponential 
Normal 

Linear 
Sinusoidal 

Combined 

Exponential 

Normal 

Linear 

Sinusoidal 

Combined 

Mean 
value 

99.6588 
99.3446 

99.1985 
98.9832 

99.523 

97.3799 
94.9668 
93.8452 

92.1917 
94.6921 

91.6235 

83.9086 

80.3228 
75.0365 

78.1929 

percentages to be in different zones for resilience of 
for severe damage based on sensitivity analysis. 

Std. 
dev. 

0.0012 
0.0022 
0.0027 

0.0034 
0.0027 

0.1303 
0.2504 

0.3062 

0.3884 
0.3062 

0.4512 

0.8668 
1.0599 

1.3447 

1.0599 

Green 
(X) 
100 
100 
100 
100 
100 

28.8983 

Yellow 
(96) 

71.1017 

100 
100 
100 
100 
100 

Red 
(%) 

100 
100 
100 
100 
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Table 4.24: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type F against the loss ratio for severe damage based on sensitivity analysis. 

Hurricane 
Category 

Recovery 
function 

Exponential 

Normal 

Linear 
Sinusoidal 

Combined 
Exponential 

Normal 
Linear 

Sinusoidal 

Combined 

Exponential 

Normal 
Linear 

Sinusoidal 

Combined 

Mean 
value 

99.8753 

99.7605 

99.7071 

99.6284 

99.8569 
99.0637 

98.2013 
97.8005 

97.2097 

98.6105 

97.0577 

94.3478 
93.0882 

91.2314 
94.0465 

Std. 
dev. 

0.0135 

0.026 
0.0318 

0.0403 

0.0318 

0.1327 

0.2548 
0.3116 

0.3953 

0.3116 

Green 
(*) 

100 
100 
100 
100 
100 
100 
100 
100 

100 

Yellow 
(X) 

100 

100 
100 
100 
100 
100 

Red 
(%) 

4.6.4 Replicas for Sensitivity to Loss Ratio for Destruction 

Resilience data for the 30 replicas of sensitivity analysis against the loss ratio for 

destruction corresponding to the building types in Table 4.1 are shown in Tables 4.26-

4.31. It is observed in Tables 4.25-4.30 that resilience of all the building types against 

Category 3 hurricanes is more sensitive to the loss ratio for destruction compared to the 

resilience against the other hurricane categories. In addition, resilience of all the 

building types against Category 1 hurricanes is not sensitive at all to the loss ratio for 

destruction. Moreover, resilience of the building types B and F against Category 2 

hurricanes is not sensitive at all to the loss ratio for destruction. The building types D 

and B are respectively the most and the least sensitive to the loss ratio for destruction. 
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Table 4.25: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (96) (96) (*) 

Exponential 99.8645 0 100 0 0 
Normal 99.7397 0 100 0 0 

1 Linear 99.6817 0 100 0 0 

Sinusoidal 99.5962 0 100 0 0 

Combined 99.8359 0 100 0 0 

Exponential 98.8885 0.0003 100 0 0 
Normal 97.8647 0.0005 100 0 0 

2 Linear 97.3889 0.0007 0 100 0 

Sinusoidal 96.6874 0.0008 0 100 0 

Combined 98.2111 0.0008 100 0 0 

Exponential 96.1852 0.1106 0 100 0 
Normal 92.6717 0.2124 0 100 0 

3 Linear 91.0387 0.2597 0 100 0 
Sinusoidal 88.6313 0.3295 0 0 100 

Combined 91.7424 0.3295 0 100 0 

Table 4.26: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (96) (96) (%) 

Exponential 99.921 0 100 0 0 

Normal 99.8483 0 100 0 0 

1 Linear 99.8145 0 100 0 0 

Sinusoidal 99.7646 0 100 0 0 

Combined 99.9068 0 100 0 0 

Exponential 99.3016 0 100 0 0 
Normal 98.6584 0 100 0 0 

2 Linear 98.3595 0 100 0 0 

Sinusoidal 97.9188 0 100 0 0 

Combined 98.9888 0 100 0 0 

Exponential 97.5594 0.038 100 0 0 

Normal 95.3116 0.073 0 100 0 
3 Linear 94.2668 0.0893 0 100 0 

Sinusoidal 92.7266 0.1132 0 100 0 

Combined 95.246 0.1132 0 100 0 
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Table 4.27: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (*) (%) 

Exponential 99.858 0 100 0 0 

Normal 99.7272 0 100 0 0 

1 Linear 99.6664 0 100 0 0 

Sinusoidal 99.5768 0 100 0 0 

Combined 99.8229 0 100 0 0 

Exponential 98.6768 0.033 100 0 0 

Normal 97.4581 0.0635 42.2983 57.7017 0 

2 Linear 96.8917 0.0776 0 100 0 

Sinusoidal 96.0567 0.0984 0 100 0 

Combined 97.553 0.0984 72.942 27.058 0 

Exponential 95.157 0.353 0 100 0 

Normal 90.6965 0.678 0 83.9337 16.0663 

3 Linear 88.6233 0.8291 0 5.6153 94.3847 

Sinusoidal 85.567 1.0519 0 0 100 

Combined 88.1815 1.0519 0 2.899 97.101 

Table 4.28: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (%) (%) 

Exponential 99.6698 0 100 0 0 

Normal 99.3657 0 100 0 0 

1 Linear 99.2244 0 100 0 0 

Sinusoidal 99.0161 0 100 0 0 

Combined 99.542 0 100 0 0 
Exponential 97.4202 0.0485 17.3707 82.6293 0 

Normal 95.0442 0.0932 0 100 0 

2 Linear 93.9399 0.1139 0 100 0 
Sinusoidal 92.3119 0.1445 0 100 0 

Combined 94.7924 0.1445 0 100 0 

Exponential 91.5902 0.674 0 100 0 

Normal 83.8446 1.2947 0 0 100 

3 Linear 80.2446 1.5832 0 0 100 
Sinusoidal 74.9374 2.0085 0 0 100 

Combined 78.0568 2.0085 0 0 100 
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Table 4.29: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type E against the toss ratio for destruction based on sensitivity analysis. 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (94) (X) (%) 

Exponential 99.6588 0 100 0 0 
Normal 99.3446 0 100 0 0 

1 Linear 99.1985 0 100 0 0 
Sinusoidal 98.9832 0 100 0 0 
Combined 99.523 0 100 0 0 
Exponential 97.3801 0.0517 0 100 0 
Normal 94.9672 0.0992 0 100 0 

2 Linear 93.8457 0.1214 0 100 0 
Sinusoidal 92.1924 0.154 0 100 0 
Combined 94.6927 0.154 0 100 0 
Exponential 91.6265 0.6659 0 100 0 
Normal 83.9144 1.2793 0 0 100 

3 Linear 80.3298 1.5643 0 0 100 
Sinusoidal 75.0455 1.9846 0 0 100 
Combined 78.202 1.9846 0 0 100 

Table 4.30: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.8753 0 100 0 0 
Normal 99.7605 0 100 0 0 

1 Linear 99.7071 0 100 0 0 
Sinusoidal 99.6284 0 100 0 0 
Combined 99.8569 0 100 0 0 
Exponential 99.0637 0 100 0 0 
Normal 98.2014 0 100 0 0 

2 Linear 97.8006 0 100 0 0 
Sinusoidal 97.2098 0 0 100 0 
Combined 98.6105 0 100 0 0 
Exponential 97.058 0.0666 0 100 0 
Normal 94.3483 0.1279 0 100 0 

3 Linear 93.0889 0.1564 0 100 0 
Sinusoidal 91.2322 0.1984 0 100 0 
Combined 94.0471 0.1984 0 100 0 

4.6.5 Replicas for Sensitivity to Actual Recovery Time for Minor Damage 

Resilience data for the 30 replicas of sensitivity analysis against the actual recovery time 

for minor damage corresponding to the building types in Table 4.1 are shown in Tables 



www.manaraa.com

141 

4.31-4.36. It is observed in Tables 4.31-4.36 that resilience of the building types A, B, C, 

and F against Category 2 hurricanes is more sensitive to the actual recovery time for 

minor damage compared to the resilience against the other hurricane categories. Even 

though resilience of the building types D and E against Category 1 hurricanes is more 

sensitive for exponential and normal recovery functions, it is more sensitive against 

Category 2 hurricanes when linear and sinusoidal recovery functions are used. 

Resilience against Category 3 hurricanes is usually the least sensitive compared to the 

resilience against the other hurricane categories. 

Table 4.31: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type A against the actual recovery time for minor damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.8651 0.0337 100 0 0 
Normal 99.74 0.0621 100 0 0 

1 Linear 99.6911 0.0605 100 0 0 
Sinusoidal 99.6101 0.0739 100 0 0 
Combined 99.8364 0.0376 100 0 0 
Exponential 98.8887 0.0568 100 0 0 
Normal 97.8649 0.1043 99.902 0.098 0 

2 Linear 97.3937 0.1193 28.034 71.966 0 
Sinusoidal 96.6944 0.1498 0 100 0 
Combined 98.2115 0.0857 100 0 0 
Exponential 96.1854 0.0347 0 100 0 
Normal 92.672 0.0637 0 100 0 

3 Linear 91.0399 0.0757 0 100 0 
Sinusoidal 88.6329 0.0961 0 0 100 
Combined 91.7431 0.0669 0 100 0 
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Table 4.32: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type B against the actual recovery time for minor damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (X) (X) (%) 

Exponential 99.9215 0.0232 100 0 0 

Normal 99.8486 0.0428 100 0 0 

1 Linear 99.8217 0.0407 100 0 0 

Sinusoidal 99.7753 0.0496 100 0 0 

Combined 99.9073 0.0251 100 0 0 
Exponential 99.3022 0.0656 100 0 0 

Normal 98.6589 0.1206 100 0 0 

2 Linear 98.3681 0.1331 100 0 0 

Sinusoidal 97.9316 0.1658 99.8137 0.1863 0 

Combined 98.9898 0.0895 100 0 0 

Exponential 97.5597 0.0538 92.659 7.341 0 

Normal 95.3119 0.0989 0 100 0 

3 Linear 94.2697 0.1159 0 100 0 

Sinusoidal 92.7307 0.1466 0 100 0 
Combined 95.2469 0.0939 0 100 0 

Table 4.33: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type C against the actual recovery time for minor damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (X) (X) (X) 

Exponential 99.8586 0.0345 100 0 0 
Normal 99.7275 0.0635 100 0 0 

1 Linear 99.6761 0.0617 100 0 0 

Sinusoidal 99.5912 0.0753 100 0 0 

Combined 99.8236 0.0384 100 0 0 

Exponential 98.677 0.048 100 0 0 
Normal 97.4583 0.0882 47.096 52.904 0 

2 Linear 96.8949 0.1023 0 100 0 
Sinusoidal 96.0613 0.1289 0 100 0 

Combined 97.5541 0.0808 83.1497 16.8503 0 
Exponential 95.1574 0.0301 0 100 0 

Normal 90.6972 0.0552 0 100 0 

3 Linear 88.6247 0.0659 0 0 100 

Sinusoidal 85.5689 0.0837 0 0 100 

Combined 88.183 0.0666 0 0 100 
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Table 4.34: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type D against the actual recovery time for minor damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (*) (%) 

Exponential 99.6704 0.0446 100 0 0 

Normal 99.3659 0.0821 100 0 0 

1 Linear 99.2339 0.0844 100 0 0 
Sinusoidal 99.0301 0.104 100 0 0 
Combined 99.5425 0.0549 100 0 0 
Exponential 97.4202 0.041 7.0283 92.9717 0 
Normal 95.0441 0.0754 0 100 0 

2 Linear 93.9413 0.089 0 100 0 
Sinusoidal 92.3139 0.1127 0 100 0 
Combined 94.7926 0.0743 0 100 0 

Exponential 91.5894 0.0129 0 100 0 
Normal 83.843 0.0236 0 0 100 

3 Linear 80.2427 0.0283 0 0 100 
Sinusoidal 74.9349 0.036 0 0 100 
Combined 78.0544 0.0305 0 0 100 

Table 4.35: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type E against the actual recovery time for minor damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.6593 0.0442 100 0 0 
Normal 99.3447 0.0814 100 0 0 

1 Linear 99.2076 0.0839 100 0 0 
Sinusoidal 98.9968 0.1034 100 0 0 
Combined 99.5234 0.0548 100 0 0 
Exponential 97.3799 0.0413 0 100 0 
Normal 94.9667 0.0758 0 100 0 

2 Linear 93.8466 0.0895 0 100 0 
Sinusoidal 92.1937 0.1134 0 100 0 
Combined 94.6924 0.075 0 100 0 
Exponential 91.6234 0.0133 0 100 0 

Normal 83.9083 0.0244 0 0 100 

3 Linear 80.3225 0.0292 0 0 100 
Sinusoidal 75.0362 0.0372 0 0 100 
Combined 78.1927 0.0315 0 0 100 
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Table 4.36: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type F against the actual recovery time for minor damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. {%) (%) (%) 

Exponential 99.8759 0.04 100 0 0 

Normal 99.7605 0.0736 100 0 0 

1 Linear 99.7192 0.0698 100 0 0 

Sinusoidal 99.6464 0.0849 100 0 0 
Combined 99.8575 0.0429 100 0 0 
Exponential 99.0639 0.0761 100 0 0 

Normal 98.201 0.1399 99.999 0.001 0 

2 Linear 97.8087 0.156 97.88 2.12 0 
Sinusoidal 97.2219 0.1948 9.6907 90.3093 0 
Combined 98.6108 0.1066 100 0 0 
Exponential 97.058 0.0511 0 100 0 
Normal 94.3482 0.0939 0 100 0 

3 Linear 93.0907 0.1106 0 100 0 

Sinusoidal 91.2349 0.1401 0 100 0 
Combined 94.0477 0.0928 0 100 0 

4.6.6 Replicas for Sensitivity to Actual Recovery Time for Moderate Damage 

Resilience data for the 30 replicas of sensitivity analysis against the actual recovery time 

for moderate damage corresponding to the building types in Table 4.1 are shown in 

Tables 4.37-4.42. It is observed in Tables 4.37-4.42 that resilience of the building types 

A, B, C and F against Category 3 hurricanes is more sensitive to the actual recovery time 

for moderate damage compared to the resilience against the other hurricane categories. 

On the other hand, resilience of the building types 0 and E against Category 2 hurricanes 

is more sensitive to the actual recovery time for moderate damage. 
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Table 4.37: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type A against the actual recovery time for moderate damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (*) 

Exponential 99.8652 0.0406 100 0 0 
Normal 99.7397 0.0744 100 0 0 

1 Linear 99.6941 0.0707 100 0 0 

Sinusoidal 99.6147 0.0858 100 0 0 

Combined 99.8363 0.0509 100 0 0 

Exponential 98.8973 0.4658 99.5637 0.4363 0 

Normal 97.8646 0.8539 70.1577 29.8423 0 

2 Linear 97.5369 0.8015 51.185 48.815 0 

Sinusoidal 96.9086 0.9714 30.9777 69.0223 0 

Combined 98.2256 0.6991 85.127 14.873 0 
Exponential 96.1937 0.7892 2.1903 97.8097 0 

Normal 92.6697 1.4496 0 95.6413 4.3587 

3 Linear 91.2118 1.4768 0 78.6717 21.3283 
Sinusoidal 88.892 1.8112 0 32.221 67.779 
Combined 91.8211 1.4371 0 89.5897 10.4103 

Table 4.38: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type B against the actual recovery time for moderate damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (94) [%) (%) 

Exponential 99.9214 0.0201 100 0 0 

Normal 99.8483 0.0369 100 0 0 

1 Linear 99.8207 0.035 100 0 0 

Sinusoidal 99.7739 0.0424 100 0 0 

Combined 99.9071 0.0252 100 0 0 

Exponential 99.306 0.248 100 0 0 

Normal 98.6584 0.4546 98.736 1.264 0 

2 Linear 98.4317 0.4379 99.8657 0.1343 0 

Sinusoidal 98.0269 0.5324 81.642 18.358 0 

Combined 98.9966 0.3372 99.9933 0.0067 0 

Exponential 97.5675 0.6103 59.4097 40.5903 0 

Normal 95.311 1.1202 0 99.9943 0.0057 

3 Linear 94.4138 1.1243 0 100 0 

Sinusoidal 92.9476 1.3752 0 99.937 0.063 

Combined 95.2972 1.0236 0 100 0 
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Table 4.39: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type C against the actual recovery time for moderate damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (%) (*) 

Exponential 99.8586 0.0357 100 0 0 
Normal 99.7271 0.0655 100 0 0 

1 Linear 99.6765 0.0633 100 0 0 
Sinusoidal 99.5919 0.077 100 0 0 
Combined 99.8236 0.0448 100 0 0 

Exponential 98.6811 0.35 99.8177 0.1823 0 
Normal 97.4572 0.6426 53.3567 46.6433 0 

2 Linear 96.9757 0.6436 25.442 74.558 0 
Sinusoidal 96.1833 0.7867 4.9263 95.0737 0 
Combined 97.5834 0.5702 59.14 40.86 0 
Exponential 95.161 0.6187 0 100 0 
Normal 90.6953 1.1379 0 76.9597 23.0403 

3 Linear 88.7196 1.2215 0 19.0777 80.9223 
Sinusoidal 85.7119 1.5127 0 0 100 
Combined 88.2582 1.2781 0 9.8863 90.1137 

Table 4.40: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type D against the actual recovery time for moderate damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.6727 0.131 100 0 0 
Normal 99.3663 0.24 100 0 0 

1 Linear 99.2673 0.2245 100 0 0 
Sinusoidal 99.0799 0.272 100 0 0 

Combined 99.5445 0.1798 100 0 0 
Exponential 97.4297 0.6456 51.2347 48.7653 0 
Normal 95.0451 1.185 0 99.9783 0.0217 

2 Linear 94.0984 1.1867 0 100 0 
Sinusoidal 92.5496 1.4512 0 98.392 1.608 
Combined 94.8504 1.1152 0 99.999 0.001 
Exponential 91.5916 0.4907 0 99.803 0.197 
Normal 83.8436 0.9022 0 0 100 

3 Linear 80.29 1.0192 0 0 100 
Sinusoidal 75.0048 1.2764 0 0 100 
Combined 78.1015 1.1118 0 0 100 
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Table 4.41: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type E against the actual recovery time for moderate damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.6613 0.1368 100 0 0 
Normal 99.3442 0.251 100 0 0 

1 Linear 99.2425 0.2344 100 0 0 

Sinusoidal 99.049 0.284 100 0 0 
Combined 99.525 0.189 100 0 0 

Exponential 97.387 0.6476 48.6193 51.3807 0 
Normal 94.9635 1.1888 0 99.9707 0.0293 

2 Linear 93.9985 1.1925 0 100 0 
Sinusoidal 92.4229 1.4587 0 97.4383 2.5617 

Combined 94.7469 1.1221 0 99.9967 0.0033 
Exponential 91.624 0.5078 0 99.7813 0.2187 

Normal 83.9057 0.9337 0 0 100 
3 Linear 80.3687 1.053 0 0 100 

Sinusoidal 75.1054 1.3183 0 0 100 
Combined 78.238 1.1465 0 0 100 

Table 4.42: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type F against the actual recovery time for moderate damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (96) (%) (%) 

Exponential 99.8759 0.0284 100 0 0 
Normal 99.7606 0.052 100 0 0 

1 Linear 99.7156 0.0499 100 0 0 
Sinusoidal 99.6411 0.0606 100 0 0 

Combined 99.8574 0.0346 100 0 0 
Exponential 99.0715 0.3598 99.9873 0.0127 0 
Normal 98.2034 0.6593 85.857 14.143 0 

2 Linear 97.9119 0.6283 71.0327 28.9673 0 
Sinusoidal 97.3757 0.7629 44.481 55.519 0 
Combined 98.6228 0.5023 97.9747 2.0253 0 
Exponential 97.0694 0.716 31.9513 68.0487 0 
Normal 94.3515 1.3144 0 99.7433 0.2567 

3 Linear 93.2631 1.3229 0 99.941 0.059 
Sinusoidal 91.493 1.6189 0 80.4763 19.5237 
Combined 94.1174 1.2392 0 99.942 0.058 
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4.6.7 Replicas for Sensitivity to Actual Recovery Time for Severe Damage 

Resilience data for the 30 replicas of sensitivity analysis against the actual recovery time 

for severe damage corresponding to the building types in Table 4.1 are shown in Tables 

4.43-4.48. It is observed in Tables 4.43-4.48 that resilience of all the building types 

against Category 3 hurricanes is more sensitive to the actual recovery time for severe 

damage compared to the resilience against the other hurricane categories. In addition, 

resilience of the building types A, B and F against Category 1 hurricanes is not sensitive 

at all to the actual recovery time for severe damage. The building type D is the most 

sensitive whereas the building types B and C are the least sensitive to the actual 

recovery time for severe damage. 

Table 4.43: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type A against the actual recovery time for severe damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) {%) (%) 

Exponential 99.8645 0 100 0 0 
Normal 99.7397 0 100 0 0 

1 Linear 99.6817 0 100 0 0 
Sinusoidal 99.5962 0 100 0 0 

Combined 99.8359 0 100 0 0 
Exponential 98.8888 0.086 100 0 0 

Normal 97.8643 0.1581 98.3613 1.6387 0 

2 Linear 97.4004 0.1724 36.821 63.179 0 

Sinusoidal 96.7048 0.2142 0 100 0 

Combined 98.2125 0.1374 99.9997 0.0003 0 
Exponential 96.1907 0.7326 0.837 99.163 0 

Normal 92.6683 1.3469 0 96.599 3.401 

3 Linear 91.1788 1.4025 0 79.6367 20.3633 

Sinusoidal 88.8432 1.7259 0 30.5677 69.4323 

Combined 91.8268 1.3734 0 90.6797 9.3203 
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Table 4.44: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type B against the actual recovery time for severe damage based on sensitivity 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (*) 

Exponential 99.921 0 100 0 0 

Normal 99.8483 0 100 0 0 

1 Linear 99.8145 0 100 0 0 

Sinusoidal 99.7646 0 100 0 0 

Combined 99.9068 0 100 0 0 
Exponential 99.3024 0.0689 100 0 0 

Normal 98.6589 0.1267 100 0 0 

2 Linear 98.3712 0.1356 100 0 0 

Sinusoidal 97.9362 0.1678 99.9583 0.0417 0 
Combined 98.9909 0.099 100 0 0 

Exponential 97.5656 0.4658 61.1947 38.8053 0 

Normal 95.3142 0.8562 0 100 0 

3 Linear 94.3616 0.8912 0 100 0 
Sinusoidal 92.8686 1.0968 0 99.9973 0.0027 
Combined 95.2914 0.8105 0 100 0 

Table 4.45: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type C against the actual recovery time for severe damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) {%) (%) 

Exponential 99.8581 0.0077 100 0 0 

Normal 99.7271 0.0141 100 0 0 

1 Linear 99.6683 0.014 100 0 0 

Sinusoidal 99.5796 0.0172 100 0 0 
Combined 99.8234 0.0107 100 0 0 
Exponential 98.6777 0.1232 100 0 0 

Normal 97.4576 0.2265 51.4377 48.5623 0 

2 Linear 96.9139 0.238 0 100 0 

Sinusoidal 96.0901 0.2937 0 100 0 

Combined 97.5585 0.1914 68.16 31.84 0 
Exponential 95.1579 0.3838 0 100 0 

Normal 90.6952 0.7058 0 86.2093 13.7907 

3 Linear 88.6615 0.7924 0 3.9647 96.0353 

Sinusoidal 85.624 0.9908 0 0 100 
Combined 88.2161 0.8378 0 0.0023 99.9977 
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Table 4.46: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type D against the actual recovery time for severe damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) [%) (*) 

Exponential 99.6699 0.0057 100 0 0 

Normal 99.3658 0.0105 100 0 0 

1 Linear 99.2252 0.0115 100 0 0 

Sinusoidal 99.0172 0.0144 100 0 0 

Combined 99.5421 0.0088 100 0 0 

Exponential 97.4251 0.4777 50.0493 49.9507 0 

Normal 95.0447 0.8784 0 100 0 

2 Linear 94.0318 0.9181 0 100 0 

Sinusoidal 92.4501 1.1308 0 99.629 0.371 

Combined 94.8375 0.856 0 100 0 

Exponential 91.6011 1.2886 0 89.464 10.536 

Normal 83.8446 2.3698 0 0 100 

3 Linear 80.4655 2.5172 0 0 100 

Sinusoidal 75.2695 3.1102 0 0 100 

Combined 78.2916 2.7787 0 0 100 

Table 4.47: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type E against the actual recovery time for severe damage based on sensitivity 

analysis. 
Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.6588 0.0063 100 0 0 
Normal 99.3445 0.0115 100 0 0 

1 Linear 99.1991 0.0129 100 0 0 

Sinusoidal 98.9841 0.0162 100 0 0 

Combined 99.5231 0.0096 100 0 0 

Exponential 97.3842 0.4811 46.819 53.181 0 

Normal 94.9662 0.8846 0 99.9997 0.0003 

2 Linear 93.9362 0.9248 0 100 0 

Sinusoidal 92.3289 1.139 0 99.204 0.796 

Combined 94.7368 0.864 0 100 0 

Exponential 91.6334 1.281 0 89.9217 10.0783 

Normal 83.9069 2.3558 0 0 100 

3 Linear 80.5413 2.5 0 0 100 

Sinusoidal 75.3655 3.0885 0 0 100 

Combined 78.4228 2.754 0 0 100 
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Table 4.48: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type F against the actual recovery time for severe damage based on sensitivity 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. {*) (%) (%) 

Exponential 99.8753 0 100 0 0 
Normal 99.7605 0 100 0 0 

1 Linear 99.7071 0 100 0 0 
Sinusoidal 99.6284 0 100 0 0 
Combined 99.8569 0 100 0 0 
Exponential 99.0643 0.077 100 0 0 

Normal 98.2015 0.1417 99.9977 0.0023 0 

2 Linear 97.8119 0.1536 98.4673 1.5327 0 
Sinusoidal 97.2267 0.1906 10.1233 89.8767 0 
Combined 98.6121 0.1139 100 0 0 
Exponential 97.0625 0.4861 21.519 78.481 0 
Normal 94.3487 0.894 0 99.9967 0.0033 

3 Linear 93.1768 0.9432 0 100 0 
Sinusoidal 91.3643 1.1638 0 87.9623 12.0377 
Combined 94.094 0.8804 0 100 0 

4.6.8 Replicas for Sensitivity to Actual Recovery Time for Destruction 

Resilience data for the BO replicas of sensitivity analysis against the actual recovery time 

for destruction corresponding to the building types in Table 4.1 are shown in Tables 

4.49-4.54. It is observed in Tables 4.49-4.54 that resilience of all the building types 

against Category 3 hurricanes is more sensitive to the actual recovery time for 

destruction compared to the resilience against the other hurricane categories. In 

addition, resilience of all the building types against Category 1 hurricanes is not sensitive 

at all to the actual recovery time for destruction. Moreover, resilience of the building 

types B and F against Category 2 hurricanes is also not sensitive at all. The building types 

D and E are the most sensitive whereas the building type B is the least sensitive to the 

actual recovery time for destruction. 
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Table 4.49: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (%) {%) 

Exponential 99.8645 0 100 0 0 
Normal 99.7397 0 100 0 0 

1 Linear 99.6817 0 100 0 0 

Sinusoidal 99.5962 0 100 0 0 

Combined 99.8359 0 100 0 0 
Exponential 98.8885 0.0018 100 0 0 

Normal 97.8647 0.0034 100 0 0 

2 Linear 97.389 0.004 0 100 0 

Sinusoidal 96.6875 0.005 0 100 0 
Combined 98.2111 0.0031 100 0 0 

Exponential 96.1917 0.5292 0 100 0 

Normal 92.6743 0.9726 0 99.2243 0.7757 

3 Linear 91.1398 1.0216 0 87.163 12.837 
Sinusoidal 88.7823 1.2602 0 21.9287 78.0713 
Combined 91.8249 1.0233 0 96.629 3.371 

Table 4.50: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (X) (%) (%) 

Exponential 99.921 0 100 0 0 

Normal 99.8483 0 100 0 0 

1 Linear 99.8145 0 100 0 0 
Sinusoidal 99.7646 0 100 0 0 

Combined 99.9068 0 100 0 0 
Exponential 99.3016 0 100 0 0 
Normal 98.6584 0 100 0 0 

2 Linear 98.3595 0 100 0 0 
Sinusoidal 97.9188 0 100 0 0 
Combined 98.9888 0 100 0 0 
Exponential 97.5606 0.204 68.6953 31.3047 0 
Normal 95.3114 0.375 0 100 0 

3 Linear 94.2947 0.4092 0 100 0 
Sinusoidal 92.7684 0.5087 0 100 0 
Combined 95.2637 0.3772 0 100 0 
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Table 4.51: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (X) (X) (%) 

Exponential 99.858 0 100 0 0 

Normal 99.7272 0 100 0 0 

1 Linear 99.6664 0 100 0 0 

Sinusoidal 99.5768 0 100 0 0 

Combined 99.8229 0 100 0 0 

Exponential 98.6797 0.2025 99.9997 0.0003 0 

Normal 97.4589 0.372 52.8033 47.1967 0 

2 Linear 96.9375 0.3793 8.1797 91.8203 0 
Sinusoidal 96.1254 0.465 0 100 0 
Combined 97.5743 0.3508 62.0837 37.9163 0 

Exponential 95.1882 1.6166 5.8477 93.875 0.2773 
Normal 90.7039 2.9637 0 64.1023 35.8977 

3 Linear 89.0854 2.8785 0 40.7763 59.2237 

Sinusoidal 86.2577 3.5033 0 18.339 81.661 
Combined 88.6144 3.1044 0 36.8137 63.1863 

Table 4.52: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (X) (%) 

Exponential 99.6698 0 100 0 0 

Normal 99.3657 0 100 0 0 

1 Linear 99.2244 0 100 0 0 

Sinusoidal 99.0161 0 100 0 0 
Combined 99.542 0 100 0 0 
Exponential 97.422 0.2464 45.9103 54.0897 0 
Normal 95.0438 0.4532 0 100 0 

2 Linear 93.9802 0.4839 0 100 0 

Sinusoidal 92.3725 0.5985 0 100 0 
Combined 94.8183 0.4681 0 100 0 
Exponential 91.6361 2.8082 0 74.3783 25.6217 

Normal 83.8418 5.1489 0 10.9227 89.0773 

3 Linear 81.0365 4.9932 0 3.042 96.958 
Sinusoidal 76.125 6.0761 0 0.038 99.962 

Combined 78.9745 5.5643 0 1.223 98.777 
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Table 4.53: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.6588 0 100 0 0 
Normal 99.3446 0 100 0 0 

1 Linear 99.1985 0 100 0 0 

Sinusoidal 98.9832 0 100 0 0 
Combined 99.523 0 100 0 0 
Exponential 97.3824 0.2628 40.5077 59.4923 0 
Normal 94.9674 0.4833 0 100 0 

2 Linear 93.8901 0.5144 0 100 0 
Sinusoidal 92.2591 0.6359 0 100 0 
Combined 94.7213 0.4986 0 100 0 
Exponential 91.6751 2.7807 0 75.046 24.954 
Normal 83.9175 5.0989 0 11.006 88.994 

3 Linear 81.1173 4.9434 0 2.9433 97.0567 

Sinusoidal 76.2246 6.0159 0 0.025 99.975 

Combined 79.1092 5.5046 0 1.193 98.807 

Table 4.54: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.8753 0 100 0 0 
Normal 99.7605 0 100 0 0 

1 Linear 99.7071 0 100 0 0 
Sinusoidal 99.6284 0 100 0 0 
Combined 99.8569 0 100 0 0 
Exponential 99.0637 0 100 0 0 
Normal 98.2014 0 100 0 0 

2 Linear 97.8006 0 100 0 0 
Sinusoidal 97.2098 0 0 100 0 
Combined 98.6105 0 100 0 0 
Exponential 97.0602 0.3546 11.3397 88.6603 0 
Normal 94.3476 0.652 0 100 0 

3 Linear 93.1434 0.7012 0 100 0 
Sinusoidal 91.3142 0.8688 0 94.27 5.73 
Combined 94.0809 0.6579 0 100 0 
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4.6.9 Replicas for Sensitivity to Average Wind Speed 

Resilience data for the 30 replicas of sensitivity analysis against the average wind speed 

corresponding to the building types in Table 4.1 are shown in Tables 4.55-4.60. It is 

observed in Tables 4.55-4.60 that resilience of all the building types against Category 1 

hurricanes is less sensitive to the average wind speed compared to the resilience against 

the other hurricane categories. In addition, resilience of the building types A, C, E and F 

against Category 3 hurricanes is more sensitive to the average wind speed compared to 

the resilience against the other hurricane categories. The building types E and F are the 

most and the least sensitive to the average wind speed. 

Table 4.55:Mean value, standard deviation and percentages to be in different zones for resilience of 
building type A against the average wind speed based on sensitivity analysis. 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.8648 0.0057 100 0 0 
Normal 99.7403 0.0109 100 0 0 

1 Linear 99.6825 0.0133 100 0 0 
Sinusoidal 99.5971 0.0169 100 0 0 
Combined 99.8363 0.0078 100 0 0 
Exponential 98.8894 0.0131 100 0 0 
Normal 97.8665 0.0252 100 0 0 

2 Linear 97.3911 0.0308 0 100 0 
Sinusoidal 96.6902 0.0391 0 100 0 

Combined 98.2129 0.0256 100 0 0 

Exponential 96.1893 0.0638 0 100 0 

Normal 92.6796 0.1226 0 100 0 
3 Linear 91.0484 0.1499 0 100 0 

Sinusoidal 88.6435 0.1902 0 0 100 
Combined 91.7536 0.1765 0 100 0 
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Table 4.56: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (X) (%) 

Exponential 99.9212 0.0035 100 0 0 
Normal 99.8487 0.0066 100 0 0 

1 Linear 99.8149 0.0081 100 0 0 
Sinusoidal 99.7652 0.0103 100 0 0 

Combined 99.9071 0.0046 100 0 0 

Exponential 99.3023 0.0086 100 0 0 
Normal 98.6597 0.0165 100 0 0 

2 Linear 98.361 0.0202 100 0 0 
Sinusoidal 97.9207 0.0257 100 0 0 

Combined 98.9899 0.0151 100 0 0 
Exponential 97.5621 0.0421 100 0 0 

Normal 95.3167 0.0809 0 100 0 

3 Linear 94.2731 0.0989 0 100 0 
Sinusoidal 92.7346 0.1254 0 100 0 
Combined 95.2525 0.106 0 100 0 

Table 4.57: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) <*) 

Exponential 99.8583 0.0059 100 0 0 
Normal 99.7278 0.0114 100 0 0 

1 Linear 99.6672 0.0139 100 0 0 

Sinusoidal 99.5777 0.0177 100 0 0 
Combined 99.8234 0.0087 100 0 0 
Exponential 98.678 0.0169 100 0 0 
Normal 97.4605 0.0325 35.4577 64.5423 0 

2 Linear 96.8946 0.0398 0 100 0 
Sinusoidal 96.0603 0.0505 0 100 0 
Combined 97.5559 0.0398 100 0 0 
Exponential 95.1622 0.0758 0 100 0 
Normal 90.7065 0.1456 0 100 0 

3 Linear 88.6355 0.1781 0 0 100 
Sinusoidal 85.5825 0.226 0 0 100 

Combined 88.1966 0.2212 0 0 100 
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Table 4.58: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (*) (X) (%) 

Exponential 99.6705 0.012 100 0 0 
Normal 99.367 0.023 100 0 0 

1 Linear 99.226 0.0282 100 0 0 
Sinusoidal 99.0181 0.0357 100 0 0 
Combined 99.543 0.0191 100 0 0 
Exponential 97.4225 0.0339 7.6897 92.3103 0 
Normal 95.0486 0.0651 0 100 0 

2 Linear 93.9453 0.0796 0 100 0 
Sinusoidal 92.3187 0.101 0 100 0 
Combined 94.7982 0.0869 0 100 0 
Exponential 91.5957 0.0966 0 100 0 
Normal 83.8552 0.1856 0 0 100 

3 Linear 80.2575 0.227 0 0 100 
Sinusoidal 74.9537 0.288 0 0 100 
Combined 78.074 0.303 0 0 100 

Table 4.59: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (X) 

Exponential 99.6595 0.0122 100 0 0 
Normal 99.346 0.0235 100 0 0 

1 Linear 99.2002 0.0287 100 0 0 
Sinusoidal 98.9854 0.0365 100 0 0 
Combined 99.5242 0.0195 100 0 0 
Exponential 97.3824 0.0341 0 100 0 
Normal 94.9716 0.0655 0 100 0 

2 Linear 93.8511 0.08 0 100 0 
Sinusoidal 92.1992 0.1015 0 100 0 
Combined 94.6984 0.0876 0 100 0 
Exponential 91.6301 0.0967 0 100 0 
Normal 83.9212 0.1857 0 0 100 

3 Linear 80.3383 0.2271 0 0 100 
Sinusoidal 75.0562 0.2881 0 0 100 
Combined 78.2136 0.3038 0 0 100 
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Table 4.60: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (*) (%) 

Exponential 99.8756 0.0053 100 0 0 
Normal 99.761 0.0102 100 0 0 

1 Linear 99.7078 0.0125 100 0 0 
Sinusoidal 99.6293 0.0159 100 0 0 
Combined 99.8573 0.0068 100 0 0 
Exponential 99.0644 0.0099 100 0 0 
Normal 98.2028 0.019 100 0 0 

2 Linear 97.8023 0.0233 100 0 0 
Sinusoidal 97.2119 0.0295 0 100 0 

Combined 98.6118 0.0182 100 0 0 
Exponential 97.061 0.0472 0 100 0 
Normal 94.354 0.0907 0 100 0 

3 Linear 93.0959 0.1109 0 100 0 
Sinusoidal 91.2411 0.1406 0 100 0 
Combined 94.0549 0.1233 0 100 0 

4.7 Effects of Mitigation Actions 

Mitigation actions to improve resilience are critically important. Residential buildings 

can be made more resilient against Category 1, 2 and 3 hurricanes by implementing 

certain mitigation actions. There is a trade-off between the costs and benefits of 

mitigations actions. If these actions are less than sufficient to achieve the desired level 

of resilience, more than tolerable damage may occur resulting in high repair or 

replacement costs. On the other hand, if mitigation actions that are not critical are 

implemented at high costs, the benefits of these actions may not be enough to justify 

their costs. Hence, cost effective mitigation actions that have the highest benefit to cost 

ratio should be given priority in the implementation. 

Three types of mitigation actions are considered in this section. These actions 

are represented by three new residential building types, G, H and I. These three building 
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types are developed by applying mitigation actions to the building type F. Building types 

G and H are respectively derived from the building type F by installing shutters and 

upgrading roof approved by the Dade County, Florida. In addition, building type I is 

obtained by implementing both mitigation actions to the building type F. Fragility curves 

for the building types, G, H and I, are given in Appendix C. Monte Carlo analysis has been 

performed for the three building types as shown in Tables 4.61-4.63 and the resulting 

resilience data has been compared with the data for the building type F. When 

resilience of the building types F and G are compared, it is observed that installing 

shutters improves the resilience against Category 2 and especially Category 3 hurricanes 

even though it is slightly decreased against a Category 1 hurricane. Comparison 

between the resilience of the building types F and H show that the upgraded roof 

improves the resilience against all the hurricane categories. Resilience is enhanced 

further by both adding the shutters and upgrading the roof as the comparison between 

the resilience of the building types F and I indicates. 

Moreover, it is observed that the possibility of the resilience to be in the red 

zone can be eliminated after the shutters are added and the roof is upgraded for the 

building type F. These two mitigation actions also help bring the resilience against 

Category 1 and 2 hurricanes to the green zone. After the mitigation actions are 

implemented, the resilience against a Category 3 hurricane will be mostly in the green 

zone with a lower probability to be in the yellow zone. The resilience against a Category 

3 hurricane will be in the green zone with almost 100% probability if recovery is fast 

such as the case of an exponential recovery. As a consequence, the effects of mitigation 
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actions on the resilience can be evaluated based on the computed resilience data and a 

decision can be made about whether the benefits of these actions will be high 

compared to their costs or not. 

Table 4.61: Mean value, standard deviation and percentages to be in different zones for resilience of 
building type G based on Monte Carlo analysis. 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (X) (%) [%) 

Exponential 99.7045 6.7943 99.49 0.353 0.157 
Normal 99.71 0.1951 100 0 0 

1 Linear 99.6912 0.1964 100 0 0 
Sinusoidal 99.6158 0.2408 100 0 0 
Combined 99.6883 4.7579 99.6303 0.2603 0.1093 
Exponential 99.0926 0.4686 99.6023 0.3977 0 
Normal 98.2445 0.8769 82.0123 17.9877 0 

2 Linear 97.958 0.9197 71.4203 28.5797 0 
Sinusoidal 97.4335 1.1375 53.3657 46.6343 0 
Combined 98.6567 0.6071 95.5723 4.4277 0 
Exponential 97.7332 1.0351 64.3323 35.6677 0 
Normal 95.6136 1.9203 16.0653 83.0707 0.864 

3 Linear 94.9037 1.9489 8.579 90.667 0.754 
Sinusoidal 93.596 2.3963 3.6817 88.9573 7.361 
Combined 95.9924 1.6554 19.118 80.7173 0.1647 
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Table 4.62: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. <*) (%) (%) 

Exponential 99.9357 0.0669 99.9913 0.0077 0.001 

Normal 99.8796 0.0438 100 0 0 

1 Linear 99.8624 0.0436 100 0 0 

Sinusoidal 99.8276 0.0535 100 0 0 
Combined 99.8811 0.0503 99.9953 0.0043 0.0003 

Exponential 99.6571 0.1658 100 0 0 
Normal 99.3369 0.3136 100 0 0 

2 Linear 99.2253 0.3443 100 0 0 
Sinusoidal 99.0255 0.4289 100 0 0 
Combined 99.4991 0.1914 100 0 0 

Exponential 98.1642 0.6515 85.4457 14.5543 0 
Normal 96.454 1.2069 20.507 79.49 0.003 

3 Linear 95.8253 1.2594 9.2313 90.7687 0 
Sinusoidal 94.7415 1.5539 2.9893 96.9573 0.0533 

Combined 96.2968 1.0991 14.5263 85.4737 0 

Table 4.63: Mean value, standard deviation and percentages to be in different zones for resilience of 

Hurricane Recovery Mean Std. Green Yellow Red 
Category function value dev. (%) (%) (%) 

Exponential 99.9741 0.0184 100 0 0 
Normal 99.9498 0.0348 100 0 0 

1 Linear 99.9429 0.0363 100 0 0 

Sinusoidal 99.9286 0.0449 100 0 0 
Combined 99.9705 0.0187 100 0 0 
Exponential 99.7128 0.1502 100 0 0 
Normal 99.4451 0.2834 100 0 0 

2 Linear 99.3467 0.3132 100 0 0 
Sinusoidal 99.1771 0.3906 100 0 0 
Combined 99.5939 0.1737 100 0 0 
Exponential 99.0719 0.4963 99.3487 0.6513 0 
Normal 98.2031 0.9281 80.185 19.815 0 

3 Linear 97.9199 0.961 69.757 30.243 0 
Sinusoidal 97.3878 1.1863 52.089 47.911 0 

Combined 98.6261 0.6524 94.183 5.817 0 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Disasters, which are either intentional or not, can have long term social and 

economic impacts. For this reason, the concept of disaster resilience has to be a critical 

component of systems or organizations. Resilience management is a process that 

involves key elements of mitigation, preparedness, response and recovery. In addition, 

4Rs of resilience, which are robustness, redundancy, resourcefulness, and rapidity, 

should be integrated into the key resilience elements. Combination of all these 

elements and properties shapes the cycle of the total resilience process. Robustness 

and redundancy are considered as parts of pre-emergency phases (preparedness and 

mitigation) whereas resourcefulness and rapidity are considered as parts of post-

emergency phases (response and recovery). Resilience can be quantified for pre-

emergency and post-emergency phases. Quantification of resilience can be used to 

evaluate and compare mitigation and preparedness strategies. In addition, 

quantification of resilience can help organize response and recovery actions better. 

5.1 Contributions of the Study 

In this dissertation, a methodology for quantification of resilience is proposed for 

different types of residential buildings in the event of a hurricane. The methodology 

computes resilience of residential buildings against Category 1,2 and 3 hurricanes as 

an original contribution. It is given in a very general form that is applicable to other 

structures as well as other categories of hurricanes. Attempts to quantify resilience can 
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be found in the literature for different types of disasters. However, quantification of 

resilience for residential buildings has not been done in the literature especially for a 

hurricane disaster. In the proposed methodology, resilience values of different building 

types are computed against different hurricane categories. Summary of the steps that 

are taken to achieve resilience assessment are shown in Figure 5.1. This is one of the 

original contributions of this dissertation. 
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Figure 5.1: Resilience Assessment 
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Another unique contribution of this dissertation is to propose a dashboard 

representation of computed resilience results. It is believed that this type of 

representation of resilience can lead to an ultimate goal of resilience management. For 

the first time, resilience is calculated through fragility curves as an original contribution. 

Fragility curves are usually used to evaluate damage states of structures based on wind 

speed. However, these curves alone may not help decision makers in choosing between 

different mitigation strategies and preparedness efforts to enhance community 

resilience in case of a hurricane. Computation of resilience data by using fragility curves 

can give an idea to decision makers on how to evaluate the resilience of residential 

buildings in their community and even the resilience of the community itself. The 

proposed formulation achieves this by computing the combined resilience of different 

types of structures, which is one of its unique contributions. Hence, the proposed 

methodology makes it possible to evaluate the overall resilience of a community if the 

buildings in that community can be categorized. Evaluation of resilience and its 

visualization on dashboards by using fragility curves may give a better idea to decision 

makers about the weak and strong parts of their communities against a hurricane. 

HAZUS*mh is one of the most widely used software for the estimation of losses 

due to various types of natural hazards. Many local and state governments use 

HAZUS#mh as a loss estimation tool. FEMA also evaluates structures for municipalities 

and provide them with recommendations on how to improve strategic planning in case 

of natural hazards, namely earthquakes, hurricanes, and flooding. Since HAZUS*MH 

brings standards for categorization of structures; it is common to see exact descriptions 
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of structures for different regions in the U.S. In this dissertation, structure types 

selected from HAZUS*mh are used to compute resilience. This shows the potential 

practical application of the proposed methodology as well as its usefulness in evaluating 

community resilience by grouping residential structures in a community. Evaluation of 

community resilience helps identify less resilient and more resilient communities based 

on the resilience of the buildings forming these communities. Such an approach can also 

be employed to prioritize mitigation strategies for different regions and identify 

vulnerable parts of a community. In that sense, the proposed methodology can be very 

critical in providing decision makers with a great starting point in taking actions for 

hurricane preparedness. 

One of the major contributions of this dissertation is that it makes it possible to 

apply either the same or different recovery functions to different damage states. It is a 

very challenging task to define the type of recovery after a hurricane. There is no 

recovery function representation in the literature for a hurricane. However, some 

suggestions came from a different disaster type. Three recovery functions were 

suggested depending on preparedness, resources, and societal response for an 

earthquake event. These three recovery functions were used to represent responses of 

a system or a society that was affected. A suitable recovery function can be selected 

according to the response of a system or a society. In this dissertation, four types of 

recovery functions, exponential, normal, linear, and sinusoidal, are introduced along 

with a combination of them. It is believed that availability of different types of recovery 

functions gives great flexibility in the evaluation of resilience and helps model the 
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response of a system or a society more accurately. If decision makers can estimate the 

recovery of their system, they can use an appropriate recovery function to evaluate its 

resilience. In addition, they can apply different recovery functions to see how resilience 

changes and try to improve the response of their system according to resilience results. 

Another contribution of this dissertation is the introduction of expected and 

actual recovery times. In order to characterize loss of use after a hurricane, HAZUS*MH 

gives approximate days needed for recovery which comes from its earthquake module. 

These suggested days from HAZUS*mh are considered as expected recovery times in this 

dissertation. In reality, actual recovery times will most probably be different from these 

expected recovery times. This study considers three different cases where the actual 

recovery time can be smaller than, equal to or larger than the expected recovery time. 

The resilience expression proposed by Cimellaro (2008b) gives the same resilience for a 

specific recovery function regardless of how long the recovery takes. Such an approach 

is not realistic, because resilience should be penalized and become lower as the 

recovery takes longer and longer for the same type of recovery. If a system recovers 

quickly, its resilience should be better than the one that follows the same type of 

recovery after having the same loss and takes longer to recover. Thus, application of 

actual and expected recovery times results in more reasonable and accurate evaluation 

of resilience. Usage of both actual and expected recovery times is one of the original 

contributions of this dissertation. 

Usage of wind speed distribution in the resilience expression and normalization 

of the expression by the integral of this distribution is another unique contribution of 
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this dissertation. Since wind is the major characteristics of a hurricane, inclusion of the 

wind speed distribution makes the resilience formulation more meaningful. The integral 

over wind speed helps achieve smooth variations in the computed resilience data. 

5.2 Limitations of the Study 

In the formulation that is presented in this dissertation for resilience of various 

residential building types against hurricane winds, there are some uncertain 

parameters. For instance, evaluation of resilience is based on a loss estimation 

methodology, which itself has some inherent uncertainties. Since it is impossible to have 

complete scientific knowledge about hurricanes and their effects on buildings, the loss 

estimation methodology causes uncertainties in the study. Fragility curves that 

represent probabilities of exceedance are directly taken from the HAZUS*mh Technical 

Manual Appendices for different types of residential buildings. According to the manual, 

some assumptions, simplifications and approximations were made to obtain these 

fragility curves, which also bring some uncertainties to the study. The probabilities of 

exceedance are available only as graphs and their data is not provided in the manual. 

Hence, the data were obtained by extracting it from these graphs which introduces 

some inaccuracies to the study. 

A certain probability distribution was assumed in this dissertation for wind speed 

based on the literature. In addition, some recovery functions and their combination 

were used to represent recovery efforts for different levels of damage due to a 

hurricane. These assumptions and representations also bring uncertainties to the study. 
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Effects of terrain, wind direction and debris were not taken into consideration in 

the proposed resilience formulation. It is believed that resilience estimations could 

noticeably change if these effects are included. In addition, building type descriptions 

mostly represent the buildings in South Florida. If a building is modeled by a building 

type that does not represent it well, the resulting resilience estimation can be quite 

inaccurate. 

The main objective of this dissertation is to compute and visualize resilience of 

different building types. Validation for this type of study depends heavily on post 

hurricane studies as well as scientifically proven loss estimation studies. However, it is 

very difficult to find post hurricane data for different building types, which makes it very 

hard to validate the resilience data generated in this study. 

5.3 Future Work 

The proposed methodology for the quantification of resilience has a great potential for 

expansion. Hurricane wind speed is taken into consideration in this dissertation. 

However, direction of incidence of wind on a structure can be included in the 

formulation for resilience. In addition, debris generated during a hurricane can be very 

harmful to any type of structure. Hence, if debris generation can be somehow included 

in the methodology, it is believed that it can yield more realistic resilience evaluations. 

In this dissertation, only residential structures are subject to investigation since 

they dominate a community. Different types of structures such as commercial buildings 

and manufactured houses can be included in the study. Such a study can be useful to 



www.manaraa.com

169 

analyze the entire community resilience. It can also provide an opportunity to do a 

comparative resilience analysis among communities. 

A user friendly software tool can be developed with a graphical user interface 

based on the proposed methodology. Such a tool can also be made a module of 

HAZUS*mh for evaluation of resilience. 

Another suggestion for future work would be about recovery times. In the 

future, historical recovery times from past hurricanes can be found and forms of 

recovery can be identified. These forms can be compared with the recovery functions 

used in this dissertation. This approach can be very helpful for decision makers in 

focusing on recovery actions, which are the most important components of resilience. 

These recovery actions can lead to the suggestion of different strategies for 

prioritization of preparation actions. 

Expert elicitation and serious gaming methodology will also be useful to validate 

the proposed methodological approach and its results. Due to various reasons, such a 

validation could not be performed in this dissertation despite serious efforts towards 

doing it. This type of validation can be done as part of future work. 

In the end, the proposed methodology can be helpful in the generation of a 

resilience map for different regions of the U.S. This could be the ultimate achievement 

beyond this dissertation. 
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APPENDIX A: DEFINITIONS OF RESILIENCE ACCORDING TO DIFFERENT FIELDS1 

Term Definition Reference Discipline 
Resilience The ability to resist downward pressures and 

to recover from shock. From the ecology 
literature: property that allows a system to 
absorb and use (even benefit from) change. 
Where resilience is high, it requires a major 
disturbance to overcome the limits to 
qualitative change in a system and allow it to 
be transformed rapidly into another 
condition. From the sociology literature: 
Ability to exploit opportunities, and resist 
and recover from negative shocks. 

Alwang, 
Siegel and 
Jorgensen 
(2001) 

Social 
sciences/science 
(muitidisciplinary) 

Resilience The capacity that people or groups may 
possess to withstand or recover from 
emergencies and which can stand as a 
counterbalance to vulnerability. 

Buckle 
(1998) 

Disaster relief 

Resilience Qualities of people, communities, agencies, 
infrastructure that reduce vulnerability. Not 
just the absence of vulnerability rather the 
capacity to 1) prevent, mitigate losses and 
then if damage occurs 2) to maintain normal 
living conditions and to 3) manage recovery 
from the impact. 

Buckle, 
Marsh and 
Smale (2000) 

Disaster relief/ 
Social sciences 

Resilience A measure of how quickly a system recovers 
from failures (Emergency Mngt, Australia, 
1998, quoted in Buckle et al., 2000). 

Buckle, 
Marsh and 
Smale (2000) 

Disaster relief 

Resilience Resilience is a measure of the recovery time 
of a system. 

Correia, 
Santos and 
Rodrigues 
(1987) 

Engineering 

Resilience The capacity of group or organization to 
withstand loss or damage or to recover from 
the impact of an emergency or disaster. The 
higher the resilience, the less likely damage 
may be, and the faster and more effective 
recovery is likely to be. 

Department 
of Human 
services 
(2000) 

Disaster relief 

Resilience Details of resilience might be inherently 
unknowable, especially in the case of 
complex communities undergoing constant 
change. 

Handmer 
(2002) 

Disaster relief 

Resilience Resilience is the flip side of vulnerability - a 
resilient system or population is not sensitive 
to climate variability and change and has the 
capacity to adapt. 

IPCC (2001) 
p. 89 

United Nations 

1 (Birkman, 2006) 
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Resilience The capacity of a system, community or 
society potentially exposed to hazards to 
adapt by resisting or changing in order to 
reach and maintain an acceptable level of 
functioning and structure. This is determined 
by the degree to which the social system is 
capable of organizing itself to increase its 
capacity for learning from past disasters for 
better future protection and to improve risk 
reduction measures. 

UN/ISDR 
(2004) 

United Nations 

Resilience The capacity of a system, community or 
society to resist or to change in order that it 
may obtain an acceptable level in functioning 
and structure. This is determined by the 
degree to which the social system is capable 
of organizing itself, and the ability to increase 
its capacity for learning and adaptation, 
including the capacity to recover from a 
disaster. 

UNDP-BCPR 
(2004) 

United Nations 

Resiliency Pliability, flexibility, or elasticity to absorb the 
event. Resiliency is offered by types of 
construction, barriers, composition of the 
land (geological base), geography, bob 
shelters, location of dwelling, etc. As 
resiliency increases, so does the absorbing 
capacity of the society and/or the 
environment. Resiliency is the inverse of 
vulnerability. 

Journal of 
Prehospital 
and Disaster 
Medicine 
(2004) 

Science 
(Multidisciplinary) 

Resiliency The ability of social units (e.g., organizations, 
communities) to mitigate hazards, contain 
the effects of disasters when they occur, 
carry out recovery activities in ways that 
minimize social disruption and mitigate the 
effects of future disasters. 

Bruneau et. 
al. (2003) 

Disaster 

Resiliency Resiliency to disasters means a locale can 
withstand an extreme natural event with a 
tolerable level of losses. It takes mitigation 
actions consistent with achieving that level of 
protection. 

Mileti (1999) Geosciences 



www.manaraa.com

181 

APPENDIX B: REVIEW OF FORMULATIONS FOR QUANTIFICATION OF RESILIENCE 

Bruneau et al. (2003) first established a framework to conceptualize, define and 

enhance seismic resilience of communities. In their work, they emphasized that a clear 

definition of resilience and identification of its dimensions are necessary to quantify it. 

Their objectives of enhancing seismic resilience are to minimize loss of lives, injuries and 

economic losses. A general measure of seismic resilience that takes these key features 

into consideration is shown in Figure B.l. 

A measure, Q(t), which is a function of time, represents the quality of an 

infrastructure of a community. The performance value of Q(t) ranges between 0% and 

100% where 0% means that no service is available and 100% means that there is no 

degradation in service. If a disruption occurs at time, t0, Q(t) may drop suddenly to a 

value below 100%. The service can be fully recovered at time, tlt when Q(t) resumes to 

100% as shown in Figure B.l. Thus, resilience loss, RL, can be measured by the 

magnitude of loss of quality over time which suggests the following definition: 

(B-l) 
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Quality of 
infrastructure 

(%) 
RL 

50 

0 

time 

Figure B.l: A general measure of seismic resilience (Bruneau et al., 2003). 

Chang and Shinozuka (2004) defined resilience by introducing loss of system 

performance based on predefined performance standards of robustness, r* and 

rapidity, t*, as shown in Figure B.2. Initial loss, r0, and time to full recovery, ta, are 

compared to maximum acceptable loss, r*, and maximum acceptable disruption time, 

t*, respectively. Then, resilience is defined as the probability that the system of interest 

will meet predefined performance standards, A, in a given scenario, /, as 

where resilience is quantified as the probability of meeting both robustness and rapidity 

standards in scenario, /'. 

Moreover, a reliability objective, /?*, which represents the minimum acceptable 

probability of meeting the predefined performance standards in scenario, /, is defined. 

When resilience objectives are met, P(A/i) satisfies 

(B-2) 
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/ x (B-3) 
P ( A / i ) Z R *  

for scenario, /. Furthermore, broad system resilience, ZA, can be defined as 

0 (6-4) 

by taking all possible scenarios into consideration. 

System 
Performance 

(Q) 

r0>r 
ti<f 

without earthquake 

- iT-y 

with earthquake 

1 1 • 

Figure B.2: Resilience measurement framework. (Chang and Shinozuka, 2004). 

Bruneau and Reinhorn (2007) tried to quantify seismic resilience of acute care 

facilities. In their study, they included additional properties of resilience; 

resourcefulness and redundancy, as the third and the fourth dimensions to Figure B.2, 

respectively. Figure B.4 is a four dimensional upgraded version of Figure B.3, which is 

enhanced with quantification capacity of necessary resources as the third dimension. As 

shown in Figure B.4, if the capacity of resources is increased, time to recovery reduces. 
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Tim* 

100 

50 

Figure B.3: Three-dimensional (3-D) concept of resilience (expanded with resourcefulness dimension) 
(Bruneau and Reinhorn, 2007). 

or 

1» 

Figure B.4: Four-dimensional (4-D) concept of resilience (expanded with redundancy dimension) 
(Bruneau and Reinhorn, 2007). 

They defined a measure of functionality as 

Q — 1 \j-£tQE )frec (t, t0E, )aR ] 
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where 

L(t0E ) : magnitude of loss function, 

free *oe » ̂ re ) •' recovery function after the time of event occurrence, toe, shaped 

according to the resources available and allocated during the 

recovery period, T«f, 

<XR : functionality recovery function, 

and 

= (B-6) 
j 

with L'lsĵ oê  FP being loss ratio and (Rj — LSj) being the probability 

function that the expectation, Rj, will exceed the performance limit state, LSj. They 

presented two alternatives to measure Q(t). In the first alternative, Q(t) is the 

percentage of healthy population before and after an earthquake. This alternative has 

some disadvantages, so they introduced the second alternative which is the treatment 

capacity of the total hospital infrastructure in a given geographical region. The second 

alternative could be a better choice for quantification of Q(t), because it focuses on a 

physical infrastructure and its ability to provide intended functions which facilitates 

engineering quantification (Chang et al. 2002). 



www.manaraa.com

186 

Later, Cimellaro (2006) developed a formulation based on the conditional and 

total probability theorems as shown in Figure B.5. This formulation provides a 

quantitative expression for resilience for multiple events as follows: 

i V /  1 = 1  E = 1  l R E  t 0 E  

with 

Q(0 = 1~~ Li?* \H(t0E) H(t0E + Tfjg. YJFXRFREC (t, t0E, ) (B-8) 

where 

Ne ' number of extreme events expected during the lifespan (or control 

period), TLC, of the system, 

Ni : number of different extreme event intensities expected during the 

lifespan (or control period), TLC, of the system, 

Tre : recovery time from event, f, 

toe '• time of occurrence of event, E, 

frecft, toe, TRE) '• recovery function, 

H(toe) : step function (=0 for t<t0E', =1 otherwise), 

aK : recovery factor (=1) for full recovery, 
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L(L The) '• normalized loss function, 

P(l) : probability that an event of a given intensity happens in a given time 

interval, TLC, 

PE(0,Tlc) : probability that an event happens E times in a given time interval, TLo 

0%<R<100% 
50 

t<)El toEl+TRE1 toe2 time 

Figure B.5: Resilience representation for quantification (Bruneau and Tierney, 2006). 

In (B-7), only the intensity measure I was considered as uncertainty measure. 

Later, Cimellaro (2008b) developed a more general form of (B-7). He added five more 

sources of uncertainties to (B-7) and he finally came up with more the general form of it 

for a single event. These sources of uncertainties are response parameters, R, 

performance threshold, rfcm, performance measures, PM, losses, L, and recovery time, 

THE- The steps to reach the general form of resilience formulation are given as follows: 

lNE,i 

rt = J Q{t)dt 
'nej 

(B-9) 
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where 

QiO~ 1 IXI 'Tre )[^(^A'E) H(tNE + Tftg )]or^ ̂ Rec ' Tre ) (B-10) 

If the sources of uncertainties are inserted into (B-10), resilience becomes 

R = J J J J J rPcdI dRdPM dLdTRE {B-n) 
TRE LPM R /•» 

where 

P c  =  P ( T r e / L ) P ( L / P M ) P ( P M I R ) P ( R / I ) P ( I t  > / * )  
(B-12) 

In (B-12), it is possible to see conditional probabilities as various uncertainties. 

Since (B-11) cannot be analytically solved, Cimellaro (2008b) divided it into discrete 

pieces and put it into the following form 

_ N_T»t ?'• R = AIARAPMALAT^ {B.13) 
Tkf L PM R i 
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APPENDIX C: FRAGILITY CURVES FOR RESIDENTIAL BULDINGS 

Figures show fragility curves of the overall building damage states for residential 

buildings in this appendix. Fragility curves (also known as damage state curves) 

represent the probabilities of achieving a certain damage state versus storm maximum 

peak gust speed in open terrain at 10 meters above ground. Plots are directly taken 

from the HAZUS#mh Technical Manual Appendices for selected building types to be used 

in this dissertation (2009). 
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100 120 140 160 
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180 200 

Figure A.l: Damage states versus maximum peak gust wind speed for type A - one story, 6d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, unreinforced masonry walls, z = 0.03 m. o 
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Figure A.2: Damage states versus maximum peak gust wind speed for type B - one story, 6d roof 
sheathing nails, strapped roof trusses, hip roof, no garage, unreinforced masonry walls, zg- 0.03 m. 
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200 

Figure A.3: Damage states versus maximum peak gust wind speed for type C - one story, 6d roof 
sheathing nails, toe-nailed roof trusses, gable roof, no garage, unreinforced masonry walls, zg= 0.03 m. 
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Figure A.4: Damage states versus maximum peak gust wind speed for type D - two story, 6d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, wood frame walls, z = 0.03 m. 

a  0.4 
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100 120 140 160 
Peak Gust Wind Speed (mph) 

200 

Figure A.5: Damage states versus maximum peak gust wind speed for type E - two story, 6d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, unreinforced masonry walls, zg= 0.03 m. 
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Figure A.6: Damage states versus maximum peak gust wind speed for type F - one story, 8d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, unreinforced masonry wails, z = 0.03 m. 0 
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Figure A.7: Oamage states versus maximum peak gust wind speed for type G - one story, 8d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, unreinforced masonry walls, zg= 0.03 m, 

shutters. 
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Figure A.8: Damage states versus maximum peak gust wind speed for type H - one story, 8d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, unrelnforced masonry walls, zq= 0.03 m, 

Dade County roof. 
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200 
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Figure A.9: Damage states versus maximum peak gust wind speed for type I - one story, 8d roof 
sheathing nails, strapped roof trusses, gable roof, no garage, unrelnforced masonry walls, z = 0.03 m, o 

shutters and Dade County roof. 
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